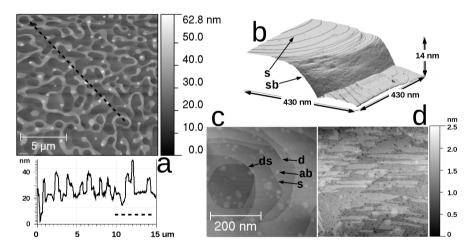
Nanostructured Surfaces


The nanostructuring of atomically flat Ru(0001) along oxidation and reduction routes

<u>A. Goriachko¹</u>, H. Over²

¹ Department of Physical Electronics, Taras Shevchenko National University of Kyiv. Hlushkova Ave, 4G, Kyiv, 03127, Ukraine. E-mail: andreandy2000@gmail.com

² Institute of Physical Chemistry, Justus Liebig University. Heinrich Buff Ring 17, 35392 Giessen, Germany.

The oxidation of ruthenium and in particular Ru(0001) is widely studied nowadays due to importance of RuO_2 both as an industrial and a model catalyst [1].

In this contribution we employ a scanning tunneling microscopy in ultra-high vacuum to study the transformation from an atomically flat Ru(0001) to heterogeneous Ru- RuO_2 nanostructured surface and investigate its morphological changes as a result of interaction with O_2 , CO and Cl_2 .

1. *Over H.* Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: from fundamental to applied research // Chem.Rev. -2012.-**112.-**P. 3356-3426.