Nanostructured surfaces

Substantiation of epitaxial growth of diamond crystals on the surface of the carbide Fe₃AlC_{0.66} phase

<u>Ie.M. Dzevin</u>¹, O.A. Mekhed¹

¹ G.V. Kurdyumov Institute for Metal Physics, Natl. Acad. of Sci. of Ukraine, Vernadsky blvd., 36, Kiev-03680, Ukraine. E-mail: dzevin@i.ua

There were calculated the parameters of unit cells, the enthalpy of formation of the Fe₃AlC, Fe_{3.125}Al_{0.825}C_{0.5}, Fe_{3.5}Al_{0.5}C_{0.5}, Fe_{3.5}Al_{0.5}C, Fe₃Al_{0.66}C_{0.66}, Fe₃AlC_{0.66} unit cells and identified the crystallographic planes, on which was possible the epitaxial growth of diamond phase, using density-functional theory as implemented in WIEN2k package.

The possibility of epitaxial growth of diamond crystals on $Fe_3AlC_{0.66}$ (K-phase) substrate was shown. (200) plane was established to be the most suitable plane for the diamond growth having four carbon atoms arranged in a square and a vacancy in the center which can be occupied by carbon during thermobaric treatment. Distances between carbon atoms in the plane differ by only 5% from distances between carbon atoms of a diamond. The electron structure and energetic parameters of a substrate was investigated. It was shown that the substrate with at least four intermediate layers of K-phase exhibits signs of stability such as negative enthalpy of formation and Fermi level falling on minimum of densities of states.