Nanocomposites and nanomaterials

High-temperature electrochemical synthesis of chromium, molybdenum, and tungsten silicides from halide-oxide melts

V.V. Malyshev¹, <u>D.B. Shakhnin¹</u>, A.S. Podyman¹, J. Schuster²

¹ Department of Physical Chemistry of Ionic Liquids, V.I. Vernadsky Institute of General and Inorganic Chemistry, Natl. Acad. of Sci. of Ukraine. Prospect Akademika Palladina, 32/34, Kyiv-03142, Ukraine. E-mail: shakhnin@ukr.net

² Faculty of Chemistry, University of Vienna, Universitätsring 1, 1010 Vienna, Austria.

For chromium silicides obtaining, high-temperature electrochemical synthesis (HTES) was realized in molten mixture NaCl-KF-K₂SiF₆-K₂CrO₄. Depending on the melt composition and electrolysis parameters, both individual phases of Cr₂O₃, Cr₃Si, CrSi₂, and mixtures of these phases with low silicon content were obtained. Analysis of interactions of Cr₂O₃ with Si using reference data for obtaining of various silicides (Cr₅Si₃, Cr₃Si, CrSi₂ formation process proceeds through lower silicides formation steps, and, under HTES conditions (973-1173 K), Cr₃Si and CrSi₂ silicides formation, and also oxidation of Si to SiO₂, are thermodynamically the most favorable processes. Experimental data have shown that the process of silicothermic reduction of Cr₂O₃ depends on several factors, among which the decisive role is played by the temperature and duration of the process. With the synthesis temperature 1123-1223 K and with the current density 0.5-1.5 A cm⁻², chromium silicide powders were obtained with particles size 30-80 nm.

Electrochemical synthesis of molybdenum and tungsten silicides was carried out from molten mixture NaCl-KF-K₂SiF₆-Na₂MO₄ (where M - Mo W). The first step of the electrolysis process is the formation of the metal-salt "pear" and the silicon deposition process begins with transformation of refractory metal oxisalt. For the HTES, essential are temperature and current density. With the temperature decrease below 1123 K, the completeness of interaction between Mo (W) and Si is not provided, and with the temperature increase above 1223 K, the metal-salt "pear" stability falls, and silicides do not form. With the optimal composition of the melt, pure disilicides MoSi₂ and WSi₂ were obtained with cathode current density i_k = 0.5-1.2 A cm⁻² for MoSi₂ and 0.5-1.5 A cm⁻² for WSi₂. The average particles size of obtained powders was 35-70 nm. The yield of MoSi₂ was 0.2-0.3, and those of WSi₂ – 0.3-0.45 g (A⁻h)⁻¹.