Nanostructure surface

Impact of rapid thermal annealing on optical properties of Mn⁺ion implanted of ZnO nanorods

<u>S.V. Rarata^{1,2}</u>, K.A. Avramenko¹, V.V. Strelchuk¹, V.P. Melnik¹, P.Tronc³, Chan Oeurn Chey⁴, Omer Nur⁴ and Magnus Willander⁴

¹ V. Lashkaryov Institute of Semiconductor, Natl. Acad. of Sci. of Ukraine. Prospect Nauki, 41, Kiev-03028, Ukraine.

² Department of Physics, Taras Shevchenko National University of Kyiv, Volodymyrs'ka str., 64/13, Kiev- 01601, Ukraine. E-mail: <u>rarata@ukr.net</u>

³ Centre National de la Recherche Scientifique, Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris, 10 rue Vauquelin, 75005 Paris, France.

⁴ Physical electronics and nanotechnology division, department of Science and Technology, campus Norrkuping, Linkuping University, SE-60174 Norrkuping, Sweden.

Doping ZnO transition metal atoms can get diluted magnetic semiconductors, which in the future may be used in spintronic devices. In this work investigated the influence of different doses of Mn⁺-ion implantation $(0.5 \cdot 10^{14}; 2 \cdot 10^{14} \text{ and } 3 \cdot 10^{14})$ and rapid thermal annealing (RTA) at 700°C for 2 min on optical properties of ZnO nanorodes (NRs). The low temperature aqueous chemical growth method was used for the synthesis of ZnO NRs with diameter 450-600 nm on glass substrates. Micro-Raman spectra of pure ZnO NRs exhibits vibration modes peaked at 98.3, 332.0, 378.0, 437.2, 410.0 and 579.7 cm⁻¹ which corresponding E_2^{low} , E_2^{high} - E_2^{low} , A_1^{TO} , E_1^{TO} , E_2^{high} and A_1^{LO} modes that characterize wurtzite structure of ZnO NRs. Implantation of Mn⁺ ions ZnO NRs leads to the formation of a solid solution Zn₁. $_{\rm x}$ Mn_xO and registration in micro-Raman spectra additional mode at 552 cm⁻¹ which attributed to Zn-related vibration due to Mn incorporation. After RTA of Zn_{1-x}Mn_xO NRs in micro-Raman spectra registers an increasing intensity and decreasing halfwidth at half maximum of E_2^{low} ra E_2^{high} modes compared with not annealed Zn_1 . _xMn_xO NRs due to the significant improvement stoichiometry both cationic and anionic sublattice in ZnO matrix. After annealing Zn_{1-x}Mn_xO NRs A₁^{LO} mode reveals high frequency shift for 6 cm⁻¹ compare to frequency Zn_{1-x}Mn_xO NRs before annealing. Which can be explain increases the concentration of free carriers in the conduction band of Zn_{1-x}Mn_xO NRs after compensated Mn²⁺-ion native charge defects ZnO that act as traps for free carriers.