Nanocomposites and nanomaterials

Physico-chemical interaction in CuSbSe₂-"P₂Se₄" system <u>M.V. Potoriy¹</u>, P.M. Milyan², S.F. Motrya²

¹ Department of Chemistry, Uzhgorod National University, Pidgirna street, 46, Uzhgorod 88000, Ukraine.

² Research Institute for Physics and Chemistry of Solids, Uzhgorod National University, Pidgirna street 46, Uzhgorod 88000, Ukraine, E-mail: pet-milyan@yandex.ru

Modern device engineering needs the devices with different semiconductor materials. Among them quaternary compounds $Me^{I}Me^{III}P_2X_6$ (Me^I-Cu, Ag; Me^{III}-In, Sb, Bi, Cr, V; X-S, Se) which were intensively studied recent years can be interesting as ferroelectrics and thermoelectrics.

 $CuSbP_2Se_6$ is one of such compounds. This report describes physico-chemical interaction in $CuSbSe_2$ -" P_2Se_4 " system where this compound is formed.

Samples of CuSbSe₂-"P₂Se₄" system were obtained from elementary components in evacuated silica ampoules. Weight of the sample was 5 g. Temperature of synthesis was controlled by Chromel-Alumel thermocouple. During the synthesis of the alloys firstly we stopped the heating for 24 hours at 450-500 K. Next stop was at 670 K also for 24 hours. At the maximum temperature of synthesis which was 950-1000 K the samples were endured for 1 week. In order to homogenize the alloys they were annealed at 550 K during 2 weeks.

Obtained compounds were investigated by differential thermal analysis. On the base of DTA phase diagram of CuSbSe₂-"P₂Se₄" system has been built till 50 mol. % "P₂Se₄". We established that quaternary compound CuSbP₂Se₆ is forming by peritectic reaction at 713±5 K. Composition of the peritectic point is 91 mol. % CuSbSe₂ – 9 mol. % "P₂Se₄". Eutectic point in this system (683±5 K) has a composition 94 mol. % CuSbSe₂ – 6 mol. % "P₂Se₄".

X-ray diffraction pattern of CuSbP₂Se₆ was obtained by DRON-3 diffractometer. It was established that CuSbP₂Se₆ crystallizes in trigonal lattice (P-31c) with unit cell parameters: a=6,507(1) Å; c=13,272(5) Å; Z=4; $\rho_{calc}=4,92$ g/cm³, unit cell volume V=486,578 Å³.

The density of CuSbP₂Se₆ determined by picnometry is ρ_{exp} =4,74 g/cm³.

Enthalpy of melting of CuSbP₂Se₆ was calculated using quantitative thermography method (Δ H=41,18 kJ/mol).

Obtained data of this compound may be added to a database of new quaternary compounds. Its crystallochemical characterictics can be used for identification of related compounds.