
## Sol-gel prepared nanoparticles of new mixed praseodymium cobaltites-ferrites

## I.V. Lutsyuk<sup>1</sup>, Ya.I. Vakhula<sup>1</sup>, <u>O.V. Pekinchak<sup>1</sup></u>, Yu. Prots<sup>2</sup>, W. Carrillo-Cabrera<sup>2</sup>, L.O. Vasylechko<sup>1</sup>

<sup>1</sup>Lviv Polytechnic National University, 12 Bandera Street, 79013 Lviv, Ukraine *E-mail: olgakharko@ukr.net* 

<sup>2</sup> Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany.

Nanocrystalline powders of  $PrCo_{1x}Fe_xO_3$  (x = 0.1, 0.3, 0.5, 0.7 and 0.9) were prepared by sol-gel citrate method. Crystalline  $Pr(NO_3)_3$ ·6H<sub>2</sub>O,  $Co(NO_3)_2$ ·6H<sub>2</sub>O,  $Fe(NO_3)_3$ ·9H<sub>2</sub>O and a citric acid (CC) were dissolved in water and mixed in the molar ratio of  $n(Pr^{3+}) : n(Co^{2+}) : n(Fe^{3+}) : n(CC) = 1 : (1-x) : x : 4$  according to the  $PrCo_{1x}Fe_xO_3$  nominal compositions. Prepared solutions were gelled at ~90 °C and subsequently treated at the temperatures of 700 and 800 °C for 2 h. Thus, two series of the samples were obtained. Both laboratory X-ray diffraction (XRD) data and high-resolution synchrotron powder diffraction examinations performed at ID22 beamline of ESRF revealed formation of pure perovskite structures in both  $PrCo_{1x}Fe_xO_3$  series. No traces of the parasitic phases were detected. Refined values of the lattice parameters prove the formation of continuous solid solution with orthorhombic perovskite structure (sp. group *Pbnm*) in PrCoO<sub>3</sub>–PrFeO<sub>3</sub> pseudobinary system.



Average grain size estimated from the analysis of XRD line broadening was in the limit of 50150 nm, depending on  $PrCo_{1x}Fe_xO_3$  composition. Scanning electron microscopy of  $PrCo_{0.5}Fe_{0.5}O_3$  sample prepared at 800 °C (figure) revealed a lacy morphology of the powder consisting of irregular shaped 60–100 nm nanoparticles.

**Acknowledgments:** The work was supported in parts by the Ukrainian Ministry of Education and Sciences (Project "KMON") and ICDD Grant-in-Aid program. High-resolution X-ray synchrotron powder diffraction measurements were carried out during beamtime allocated to the ESRF Experiment MA-2320.