Microscopy of Nanoobjects

Structural and morphological features of disperse alumina synthesized using aluminum nitrate nonahydrate

I.F. Myronyuk¹, <u>V.M. Sachko¹</u>, V.I. Mandzyuk¹, V.M. Gun'ko²

¹ Vasyl Stefanyk Precarpathian National University, Shevchenko Str., 57, Ivano-Frankivsk, 76018, Ukraine. E-mail: myrif@rambler.ru

² Chuiko Institute of Surface Chemistry, General Naumov Str., 17, Kyiv, 03164, Ukraine.

Transformation of Al(NO₃)₃·9H₂O (upon heating in the range of 20-1200°C) into blends of amorphous and crystalline boehmite (210-525°C), amorphous alumina and crystalline -Al₂O₃ (850°C), and crystalline -Al₂O₃ (1100°C) was analyzed using XRD, HRTEM, IR spectroscopy, thermogravimetry and low-temperature nitrogen adsorption. Investigations of calcination effects on transformations of aluminum nitrate nonahydrate into boehmite, -Al₂O₃ and -Al₂O₃ show that it occurs according to scheme

 $\begin{array}{l} Al(NO_3)_3 \cdot 9H_2O \ (100-140^{\circ}C) \rightarrow [Al(OH_2)_6]^{3+} \cdot 3NO_3^{-} \ (140-152^{\circ}C) \rightarrow \\ [AlOH(OH_2)_5]^{2+} \cdot 2NO_3^{-} \ (152-210^{\circ}C) \rightarrow AlONO_3 \cdot H_2O \ (210-525^{\circ}C) \rightarrow \\ AlOOH \ (525-1000^{\circ}C) \rightarrow \gamma \cdot Al_2O_3 \ (1100^{\circ}C) \rightarrow \alpha \cdot Al_2O_3. \end{array}$

Amorphous and crystalline phases of boehmite formed at $T > 210^{\circ}$ C represent nanoparticles of 6-10 nm in size strongly aggregated since $S_{\text{BET}} = 66 \text{ m}^2/\text{g}$ is smaller than it should be for unbound nanoparticles of the same sizes. In the amorphous phase, chains with -AlOH - O - AlOH - have the length of 1-5 nm. Heating at 350-525°C results in the formation of mesoporous aluminum hydroxide with decreasing size (2.5-5.0 nm) of nanoparticles. However, tight joining of these nanoglobules strongly reduces the specific surface area to 180 m²/g instead of 350 m²/g for individual spherical nanoparticles of similar sizes. Subsequent heating at 850°C leads to enhanced binding of γ -Al₂O₃ nanoparticles in strongly aggregated structures and S_{BET} drops down to 77 m²/g. Corundum particles formed at 1100°C are characterized by additionally increased joining in the aggregates because the value of S_{BET} is minimal (14 m²/g).