
THERMODYNAMIC COMPLEXING OF MONOCYCLOPENTADIENYLFERRUM (II) INTERCALATES WITH DOUBLE-WALLED CARBON NANOTUBES

O.V. Mykhailenko¹, Yu. I. Prylutskyy¹, I.V. Komarov¹, A.V. Strungar²

¹Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64, Kyiv-01601, Ukraine. E-mail: <u>alexm-@ukr.net</u>

²Vernadsky National Library of Ukraine, 3, Prospekt Sorokorichchiya Zhovtnya, Kyiv-03039, Ukraine. E-mail: 19870208@ukr.net

By employing the methods of molecular dynamics MM+, semi-empirical quantum-chemical PM3 and Monte-Carlo, there has been studied the positioning of monocyclopentadienylferrum (II) molecules in double-walled (5,5)@(10,10) carbon nanotubes (CNT) depending on their concentration and temperature. The molecules have been found out to form stable bonds with CNT walls, with a tendency between intercalate stability and the CNT structure. The temperature growth (over ~500 K) causes gradual bond ruining followed by extrusion of interwall intercalate. Further temperature increase up to 600-700 K is characterised with intercalate external surface desorption, stabilising the whole system and keeping the interwall intercalate only (Fig. 1). There have been calculated the CNT's UV-spectrum (5,5)@(10,10) depending on intercalate concentration and the association constant of the "double-walled CNT – intercalate" system which makes 6.745 1·mole⁻¹. Thus, unique optical, electrical and magnetic behaviour of cyclopentadienyl complexes, their ability to form high-stable intercalate with CNT opens a prospect of their applying in non-linear optics and nanoelectronics.

Fig. 1. Screenshot of configurational change of "double-walled CNT – intercalate" system being heated.