Nanocomposites and nanomaterials

Thermal stability, nanocrystallization processes and magnetic properties of new nanocrystalline Fe–B–Si–P–Cu–M alloys

T.M. Mika, I.K. Yevlash, V.K. Nosenko, A.V. Nosenko, O.M. Semyrga

G.V. Kurdymov Institute for Metal Physics, Natl. Acad. of Sci. of Ukraine. 36 Vernadsky Str., Kyiv-03142, Ukraine. E-mail: <u>mikat@ukr.net</u>

The authors proposed new nanocrystalline soft magnetic Fe-based alloys with lower core loss than Si-steels and higher saturation induction (B_s) than conventional amorphous and/or nanocrystalline alloys [1] with the aim to reduce mass and dimensions of magnetic cores of magnetic transformers. A nanoheteroamorphous initial structure of rapid quenched ribbons is required to reach excellent soft magnetic properties after heat treatment for Fe-Si-B-P-Cu-M base alloys system [1]. Simultaneous additions of both P and Cu in Fe-rich alloys induce heteroamorphous state – α -Fe grains with extreme small size less than 3 nm in supercooled matrix of alloys that exceeds the limit for completely amorphous structure. The only difference between the new Fe-Si-B-P-Cu-M alloys and Fe-Cu-Nb-Si-B alloys is replacement of larger atoms of Nb by smaller P atoms. Crystal growth inhibition which is one of the important factors of nanocrystallization is achieved by Nb addition in FINEMET-alloys [2], however the inhibition mechanism is not obvious for the new investigated alloys. Besides, the replacement of Nb by P makes crystallization strongly dependent on annealing conditions.

The authors studied the thermal stability, nanocrystallization processes and magnetic properties of the Fe-Si-B-P-Cu-M alloys and find out the following benefits of new alloys of certain chemical composition - high saturation magnetic flux density ($B_s = 1,85$ T), close to B_s of rolled transformer steel (Fe-3 wt.%Si) and approximately three times lower core loss (P_c). This combination of properties is not possessed by any of the known soft magnetic nanocrystalline alloys. Consequently, these alloys are promising materials for production of high-power and highly efficient electrical and electronic devices operating at industrial frequency.

- 1. *Makino A*. Nanocrystalline soft magnetic Fe-Si-B-P-Cu alloys with high B of 1.8–1.9 T contributable to energy saving // IEEE Trans. Magn. 2012.–48, N 4. P. 1331–1335.
- Nosenko V.K., Semyrga O.M. Amorphous and nanocrystalline alloys for instrument making and energy efficient technology / monography "Nanoscale systems and nanomaterials: investigations in Ukraine" // Ed. in chief Naumovets O. G.; NAS of Ukraine.- Kiev.: Akademperiodyka, 2014. - P.375-383.