Nanostructured surfaces 1

Nanotechnology and nanotructured surfaces of heterosystems with C_{60} fullerene, other carbon and metallic phases

L.A. Matveeva, P.M. Litvin, P.L. Neluba, E.M. Shpilevsky

V. Lashkaryov Institute of Semiconductor Physics, Natl. Acad. of Sci. of Ukraine. Prospect Nauki, 45, Kiev-03028, Ukraine. E-mail:matveeva@isp.kiev ua

New carbon structure (carbon like and diamond like) has been prepared from fullerene C_{60} under high pressures and temperatures. In this work the films were obtained onto non-heated Si substrates from C₆₀ molecular beams by evaporation of microcrystalline C₆₀ powder in vacuum at pressure of 10⁻⁴ Pa from effusion tantalum cell with temperature of 650 to 950 K. The films thickness was from 0.1 to 2 μ km. To analyze of the films structure and composition was used Raman spectroscopy. The film surfaces was studied using atomic force microscopy with a Nanoscope III - a operating in the periodical mode. At the low evaporation temperature of fullerene C_{60} forms nearly ideal molecular films with the molecules bound by van derWaals-interactions. Raman spectra C₆₀ films display lines peaked at 1425, 1470 and 1575 cm⁻¹. The films surface was homogeneous and smooth enough. The altitude of a grain does not exceed 20 nm. The films structure changed drastically, when their velocity grown risen. Fullerene molecules decomposed and new carbon structures (C_{60} :C, C:C₆₀ and a-C) form in the films depending on the C₆₀ beam energy. In Raman spectra was observed two broad bands at 1400 cm⁻¹ and 1600 cm⁻¹ (D-band and G-band, respectively). The films surface was not smooth and inhomogeneous. Composite nanostructures with C₆₀ fullerene and metallic phases were obtained simultaneously from two independence evaporation sources: C₆₀ and Ti, Cu, Al or Sn. The surface nanomorphology of such composite films were determined of the metallic phases type and hers quantity. At the low (smaller 20 %) of C_{60} concentration were observed big metallic grains from 50 to 200 nm depending of metal type.