Physico-Chemical nanomaterials

Functionalized silicasorbents containing platinum metals for efficient nanomaterials based catalysts

<u>O. Yu. Boldyrieva</u>¹, A. M. Bondar¹, O. B. Volovenko¹, O. A. Zaporozhets¹, A. V. Yatsymyrskiy¹, D. A. Stratiychuk², V. V. Lisnyak¹

¹ Taras Shevchenko Kyiv National University, 60 Volodymyrska str., Kyiv-1601, Ukraine.E-mail:lisnyak@univ.kiev.ua

² V. N. Bakul Institute of Superhard Materials, NAS of Ukraine, 2 Avtozavodska str., Kyiv-04074, Ukraine.

Nowadays, hydrogen (H_2) is considered as a potential fuel for numerous power engines and generators. The progress in H₂ adaptation causes an increase of the attention of researchers to the reaction of $2H_2 + O_2 = 2H_2O$, which can be used to solve some of the negative effects of H₂ fuels utilization, when H₂ is mixed with the atmospheric oxygen. The latter can be preventing by H₂ recombination. Recombiners can treat even non-flammable mixtures, but they slowly eliminate H₂ from O_2 rich gas mixtures. Therefore, for the effective recombination one needs for development of high efficient H_2 oxidation catalysts, as nano-materials. One of the important steps in the development of the high-active catalysts includes a search for support of the most active oxidation catalysts being the nano-sized platinumgroup metals (PGM). In this work, the nano-materials based oxidation catalysts were prepared by adsorption/impregnation of PGM ions on silochrom and silica gels functionalized with different organics such as AcAc, primary alkylic amines, as -Pr-NH₂, thiourea, malonic acid and quaternary ammonium salts. The hydrogen oxidation catalysts containing nano-particles of PGM were formed by using red/ox routs applied to the surface complexes of platinum metals with 0.1–0.5 mass% of PGM. The optimal range of the reduction temperature to form nanosized particles was chosen within 120-230 °C. The higher temperature, according to the TG-H₂ reduction data, is an optimal for a mild reduction of PGM and the partial destruction of the surface complexes. The catalytic activity of the prepared nanocatalysts was examined in the H₂ oxidation with O₂ under GC control of H₂ conversion versus temperature and time. The results of catalytic test show that the H_2 conversion versus the temperature has a hysteretic character for up to 25 cycle of heating-cooling. The latter could be assigned to the reaction passing via heterogeneous-homogeneous mechanism, besides all the nanocatalysts show high catalytic activity at -10-50 °C. The temperature at the total conversion for the prepared catalysts is achieved at 20-120 °C lower than for the commercial KP-0.1-0.5 and some of the BASF catalysts.