Thematic area of your work (nanoscale physics)

Classical 1D structures of charges in Coulomb cluster systems

S.Ya. Goroshchenko

Bogolyubov Institute for Theoretical Physics, Natl. Acad. of Sci. of Ukraine. Metrologichna Str., 14-6, Kiev-03680, Ukraine. E-mail:gorosh@bitp.kiev.ua

It is shown that high-ordered 1D-structures of particles with a single sign of charge can be simulated on a limited length scale in the jellium model of a cluster system. In this work confining potential of a cluster is originated from the uniform cylindrical background and is specified by length 2L, diameter 2R and by whole charge eN_b of a background. 1D-structure consists of N charge units -e aligned with cluster axis in equilibrium state (inset in Fig.1)). The ordering of 1D-structure is defined by the dispersion δx in the distribution of inter-particle intervals of a chain with respect to corresponding mean inter-particle spacing d.

Fig.1. Ordering δ_x/d of 1D-structures in neutral clusters $(N=N_b)$ vs geometric factor 1/R $(2l=2L/N_b$ is the length of unit cell of background per unit charge e) in (a) a wide range of 1/R and (b) in a small range covering bottom side of δ_x/d .

Behavior of relative dispersions $\delta x/d$ in 1*D*-phase is shown in Fig.1. Values of dispersions $\delta x/d$ are of less then 1% by an order of magnitude throughout the phase. Generally quite high ordering of 1*D*-structures comes about within a cluster model used. Dispersions exhibit particular behavior on the right from the argument value l/R=1 when take minimal values of $\leq 0.01\%$ and exact zero's in the case of

N=4 and N=5. Physical mechanism responsible for this peculiarity is discussed.