Nanostructured surfaces

Studies on electrical characterization of new Poly(linolenic acid)g-poly(caprolactone)-g-poly(t-butyl acrylate) thin film

Muharrem Gökçen¹, Ümit Gürsel¹, Abdulkadir Alh², Sema Alh²

 ¹ Physics Department, Faculty of Arts and Sciences, Düzce University, Düzce, Turkey, E-mail: muharremgokcen@duzce.edu.tr
² Chemistry Department, Faculty of Arts and Sciences, Düzce University, Düzce, Turkey

Poly(linolenic acid)-g-poly(caprolactone)-g-poly(t-butyl acrylate) graft copolymer was synthesized by one-pot polymerization method [1] and used an interfacial layer in metal/semiconductor diode. This polymeric interfacial layer was fabricated basis on Si single crystal wafer by electrostatic spraying system. Nanofiber characteristics of the Poly(linolenic acid)-g-poly(caprolactone)-g-poly(tbutyl acrylate) graft copolymer layer was indicated through Scanning Electron Microscope (SEM) micrographs. For the purpose of investigating electrical characteristics of this diode, current-voltage (I-V) measurements were conducted in dark and various illumination intensity levels at room temperature. The main electrical parameters of the diode such as series resistance (R_s), shunt resistance (R_{sh}), ideality factor (n), reverse saturation current (I_o) and zero-bias barrier height (Φ_{Bo}) of the structures were extracted from forward-bias I-V data.

Acknowledgement

This work was supported financially by Turkish Scientific Research Council, TUBİTAK, (Grant Number:110T884) and Düzce University Research Fund (Grant Number: 2014.05.02.260)

References

 Allı A., Allı S., Becer C.R., Hazer B., One-pot synthesis of poly(linoleic acid)g-poly(styrene)-g-poly(ε-caprolactone) graft copolymers // Journal of the American Oil Chemists Society. – 2014.-91.-p.849-858