Nano-composites and nanomaterials

Hard B₄C-AlB₁₂ bulk composites by spark plasma sintering

Hanna Borodianska

Institute for Problems in Material Science NAS of Ukraine 3, Krzhizhanovsky Str., 03680, Kyiv, Ukraine

In aluminum dodecaboride B_{12} create 3D frame similar to polymers. As more boron bonds as stronger molecule is. Aluminum dodecaboride has 12 B atoms for every Al atom (B₄C has only 4 B for every C atom). The AlB₁₂ structure should be much stronger than boron carbide.

We performed SPS fabrication and further comprehensive characterization of bulk $B_4C -AlB_{12}$ composites (20 mm in diameter) starting from powder mixtures of B_4C and >5% wt. AlB₁₂ by non-reactive approach in vacuum. Mixtures of B_4C and AlB₁₂ powders of following compositions were

prepared: $(B_4C)(1-x)wt.\% + (AlB_{12})x wt.\%$ with x=0, 5, 10, 20 and 30 wt.%.

In this work, we test for the first time consolidation of bulk B_4C-AlB_{12} composite. We report sample preparation, HV, K_{1c} and SEM microstructure and XRD phase analysis for this new material. HV indentation measurements have shown maximum values of 37.8GPa for the samples with 20%AlB₁₂. K_{1c} varied between 3.55 and 6.67 MPa.m^{1/2}. Result is encouraging, and further optimization of composition and the SPS consolidation technique is very promising.

Related publications:

- I. Solodkyi, H. Borodianska, T. Zhao, TY. Sakka, P. Badica, and O. Vasylkiv, "B₆O ceramic by *in-situ* reactive spark plasma sintering of B₂O₃ and B powder mixture", *J. Ceram. Soc. Japan*, 122 [4] (2014).
- Bogomol, H. Borodianska, T. Zhao, T. Nishimura, Y. Sakka, P. Loboda and O. Vasylkiv, "Dense and tough (B₄C-TiB₂)-B₄C 'composite within a composite' by spark plasma sintering", *Scripta Materialia*, 71 (2014) 17–20.
- P. Badica, H. Borodianska, X. Shumao, T. Zhao, D. Demirskyi, P. Li, A. I. Y. Tok, Y. Sakka, and O. Vasylkiv, "Toughness Control of Boron Carbide Obtained by Spark Plasma Sintering in Nitrogen Atmosphere", *Ceramics International*, 40, 3053-3061 (2014).