Nanocomposites and nanomaterials

Porous texture and crystallinity control of porous SiC

D. Korytko¹, S. Gryn¹, <u>S. Alekseev</u>¹, V. Zaitsev¹, S. Khaynakov², V. Iablokov³, N. Kruse³

¹ Taras Shevchenko National University of Kyiv, Volodymyrska str., 62 Kyiv-01601, Ukraine. E-mail: alekseev@univ.kiev.ua

² University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain

³ Université Libre de Bruxelles, Chemical departement, Campus de la Plaine, CPMCT - CP, 1050 Bruxelles, Belgium

Thermal, mechanical and chemical stability together with high thermal conductivity make the mesoporous SiC with well-ordered crystalline pore walls highly demanded for catalytical and nanofiltration applications.

In the present work we describe the porous SiC with uniformly-sized mesopores, prepared by pyrolysis of the nanocomposites of polycarbosilane (PCS) polymer and SiO₂ nanoparticles (Ludox®) followed by the template leaching. The influence of the PCS:SiO₂ ratio, the template nanoparticle size (12 - 22 nm), pyrolysis temperature $(1200 - 1400^{\circ}\text{C})$, nanocomposite preparation route (PCS/SiO₂ NPs organic sol evaporation or SiO₂ NPs xerogel impregnation) and addition of Ni to the PCS:SiO₂ nanocomposites on the resulted SiC porous texture, crystallinity and oxidation stability was analyzed.

Fig. 1. A. TEM image of porous SiC made of 22 nm SiO₂ NPs template; B. Powder XRD patterns of porous SiC samples prepared at 1200°C with different Ni loading.

The synthetic conditions allowing to get precise porous SiC replica of the SiO_2 NPs template were found (Fig. 1A), the effect of temperature increase and Ni addition on the crystallinity improve was demonstrated (Fig. 1B).

This work was funded by IRSES project №319013 «Silicon carbide as a support for Co metal nanoparticles in Fischer-Tropsch synthesis».