
Chapter 18
Peculiarities of Liquid Crystal—Carbon
Nanotube Dispersions Doped
with a Minute Amount of Nanoparticles
of Synthetic Clay

S. Tomylko, O. Yaroshchuk, O. Kovalchuk and N. Lebovka

Abstract It is shown that adding of a small amount (0.1 wt %) of organomodified
laponite (LapO) nanoplatelets results in drastic changes in dielectric and electro-
optical characteristics of the suspensions of carbon nanotubes (CNTs) in nematic
liquid crystal E7. The addition of LapO leads to the absence of classical perco-
lation of conductivity and dielectric constant, as well as reduction of Frederiks
threshold and significant growth of contrast ratio of the E7-CNTs samples.

18.1 Introduction

Among the many nanoparticles used as fillers of liquid crystals (LC), carbon
nanotubes (CNTs) are of particular interest. These particles, which can be con-
sidered as rolled graphene nanolayers are characterized by enormous value of
length to diameter ratio (aspect ratio), which can be as high as several thousands.
They exhibit extraordinary mechanical strength, highly anisotropic electrical and
thermal properties.

Because of high aspect ratio and strong interaction with LC molecules (ELC-

CNT * 2 eV), CNTs well integrate in LC [1–3]. They bring new properties to LC
hosts and allow one drastically reducing the intrinsic drawbacks of these materials
that appear when using them in displays and other electro-optic devices.
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Furthermore, introduction of CNTs may result in untypical responses of LC layers
such as effect of electro-optical memory in the nematic [3–5] and isotropic [6]
phase. On the other hand, LC is a unique host for CNTs allowing ones to obtain
orientationally ordered ensembles of CNTs with readily controllable ordering axis.

The properties of LC-CNT composites strongly depend on structural organi-
zation of nanotubes. It is well known that CNTs tend to aggregate forming
developed aggregates and even continuous network at higher concentration. Effi-
ciency of this process can be affected by many factors. The most known of them is
surface modification of CNT. In this study, we extend to the LC-CNT suspensions
a more peculiar approach, known for more than a decade for dispersions [7]. This
approach is that the particles of other sort and properties are brought in a studied
composite.

As the additional particles we use the nanoplatelets of clay, which are proven to
have high affinity to CNTs and well exfoliate in LCs. As those, we earlier utilized
organically modified particles of natural clays (Montmorillonite (MMT)) [8].
However, the results appeared quite ambiguous and highly dependent on origin of
clay minerals. In the present research, we apply a synthetic clay Laponite (Lap)
mainly because of two reasons. First, the synthetic particles have identical
chemical content and structure, which are well controlled in the course of syn-
thesis. Second, the size of Lap platelets is much smaller than the size of MMT
platelets (*10 nm versus *10 lm), so they naturally belong to the category of
nanoparticles. We demonstrate that addition of small amount of Lap cardinally
changes dielectric and electro-optic properties of LC-CNT composites opening
new horizons for application of these composites.

18.2 Experimental Section

18.2.1 Materials

We used a nematic LC E7 from Merck, which is the eutectic mixture of three
cyanobiphenyl and one cyanotriphenyl compound. The temperature of its nematic-
to-isotropic transition is 58 �C. At room temperature, the dielectric constants of
this mixture in the directions parallel and perpendicular to the LC director are
e// = 19 and e\ = 5.2, respectively. As CNTs, we utilized the multi-walled carbon
nanotubes from Spetsmash Ltd. (Kyiv, Ukraine), produced from ethylene by the
chemical vapor deposition method [9]. These CNTs had an outer diameter
20–40 nm, and the length 5-10 lm. The specific electric conductivity r of the
powder of the compressed CNTs was about 10 S/cm.

The clay was Laponite from Rockwood Additives Ltd., UK Its formula is Na0.7

[(Si8Mg5.5Li0.4) O20 (OH)4]. It is a powder, in which the disc-like nanoplates of the
clay are packed into stacks. The thickness and diameter of these discs are about
1 nm and 25–30 nm, respectively. The faces of disks have a constant negative
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charge, while the surface charge of their edges is pH-dependent and positive in
acidic medium [10]. As described elsewhere [11], the platelets of original Laponite
were modified by ion-exchange reactions with the surfactant cetyltrimethylam-
monium bromide (CTAB, C16H33-N(CH3)3Br, Fluka, Germany) with 99.5 %
purity. The resultant material will be further called as the organomodified Laponite
(LapO).

18.2.2 Samples

LCs filled by multi-walled CNTs, LapO, or their hybrid mixtures, were obtained
by adding appropriate weights of the CNTs (c = 0.025–0.5 wt %) and LapO
(0.1 wt %) to E7 at T = 60 �C with subsequent 10 min sonication of the mixture
using an ultrasonic disperser at the frequency of 22 kHz. Then suspensions were
kept at room temperature for 24 h, sonicated for 2 min and then loaded by cap-
illary forces into the cells.

The cells for electro-optical and dielectric measurements were made from glass
substrates, containing patterned ITO electrodes and aligning layers of polyimide
AL3046 (JSR, Japan) for planar alignment. The polyimide layers were obtained by
spin coating technique backed at 180 �C for 90 min and rubbed by a fleecy cloth in
order to provide a uniform planar alignment of LC in the field-off state. The cells
were assembled so that the rubbing directions of the opposite aligning layers were
antiparallel or perpendicular, thus the antiparallel or twisted cells were obtained.
The antiparallel cells were further used in dielectric studies, while the twisted cells
were used for electro-optic measurements. The cell gap d was maintained by
20 lm glass spacers.

18.2.3 Methods

The dielectric studies were conducted by oscilloscopic method [12]. The experi-
mentally measured values of the resistance R and capacitance C of the LC cells
were used for calculation of dielectric constants e0 and e00, respectively. The
constants e0 and e00 were determined in a wide frequency range, f = 10-1-106 Hz,
allowing one to plot dielectric spectra of the samples. The value of e00 was further
used for calculation of the sample conductivity r from the formula r = 2pe0

e00f. Furthermore, the Cole–Cole diagrams e00(e0) were plotted to determine the
width of the near-electrode dielectric layers k and the time s of the near-electrode
relaxation [13].

The electro-optical measurements were carried out using setup described in [14].
In these experiments, the transmittance of the twist cells, T, placed between two
parallel polarizers, was measured as a function of the applied AC voltage
U (f = 2 kHz) ramped up from 0 to 30 V. The cells were operated in a waveguide
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regime (the Mauguin’s regime) [15], so that polarization of the testing light
followed the LC director, which experienced rotation in 90�. The electro-optic
contrast CR was calculated on the basis of T(U) curve, according to formula
CR = Ts/T0, where T0 and Ts are the transmittance values in the initial and saturated
states, respectively. Also, the threshold voltage of electric switching (Frederiks’s
threshold) was estimated as the voltage corresponding to the transmittance value
T0 ? 0.1(Ts–T0).

18.3 Results and Discussion

18.3.1 Dielectric Properties

The typical dielectric spectra, i.e., frequency dependences of the real e0 and
imaginary e00 parts of dielectric constant e, are presented in Fig. 18.1 for pure LC,
LC-CNT, and LC-CNT-LapO samples at 20 �C. The measured frequency range is
divided into three areas. The low-frequency area A (10-1 \ f \ 10 Hz for pure
LC) corresponds to first relaxation process, attributed to surface dipole polarization
and space-charge polarization, which essentially changes the near-electrode con-
centration of free ions [13]. The moderate frequency area B (10 \ f \104 Hz for
pure LC) reflects the processes of polarization and conduction in the bulk of the
sample. In this area, there are no relaxation processes, thus the dielectric constant
e0 and conductivity r are independent of the frequency. The high-frequency area C
(104 \ f \ 106 Hz for pure LC) is associated with another relaxation processes—
dipole relaxation in the bulk, associated with rotation around the short molecular
axis [15]. Further we consistently consider the dielectric properties of composites
in the B and A areas of the frequency range.

18.3.1.1 Bulk Dielectric Properties

As it was said above, the permittivity e0 and electrical conductivity r are frequency
independent in B area. The r (c) curves of LC-CNT and LC-CNT-LapO
composites are presented in Fig. 18.2. These data were analyzed using the least-
square fitting to the scaling equation

r ¼ a c � ccð Þt ð18:1Þ

commonly used for characterization of percolation phenomena [16]. In this
equation, cc is the critical concentration of CNTs and t is the conductivity index.
Figure 18.2 shows that Eq. (18.1) fits well to the r (c) curves for LC-CNT series,
but the fitting results are unusual compared to the dispersions of CNTs in other
matrices. First of all, the critical concentration in all cases is close to 0
(cc \ 0.02 wt %). Apparently, this is due to small distance between the electrodes
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(d = 20 lm), which is comparable to the length of the nanotubes (5–10 lm). This
means that the channels of high conductivity, associated with the nanotubes (single
nanotubes and their aggregates), start to form in the direction perpendicular to the
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(0.1 wt %) c samples

18 Peculiarities of Liquid Crystal—Carbon Nanotube Dispersions 267



composite layer at a very low concentration of CNTs. In contrast to this direction,
where the size of aggregates is limited by the cell thickness, in the plane of the
composite layer the aggregates can be practically unlimited. In this sense, the
aggregates formed in our cells are largely two-dimensional.

The conductivity index t of the samples of LC-CNT series was 0.63 ± 0.08 at
20 �C and 0.48 ± 0.03 at 80 �C. Note that r(c) dependences are essentially
sublinear. This indicates that our case is far from the ordinary 3D percolation,
characterized by t & 2 [16]. Indeed, since the length of the nanotubes is com-
parable to the thickness of the cell, the case of 2D–3D crossover, when the theory
predicts the range of 4/3 \ t \ 2 [17, 18], suits better for our samples. Never-
theless, even this assumption fails to describe sublinear character of r(c) curves.
We believe that such behavior is due to increasing of ion concentration (releasing
of the ions from nanoparticles) and solvation of CNTs by LC molecules.

It should be noted that (18.1) describes a r(c) curve for the LC-CNT-LapO
series not as good as for the LC-CNT series (there is no clear jump in
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conductivity). However, we use it to compare the r(c) curves for these two series
quantitatively. The parameter t for the LC-CNT-LapO series appeared to be two
times smaller than for the LC-CNT series: t = 0.32 ± 0.04 (at both 20 and 80 �C).
Considerably reduced values of t in the LapO-assisted suspensions give an addi-
tional evidence of inhibition of CNT aggregation in an LC. Apparently, the LapO
particles, having a great affinity to CNTs, actively surround them. Because of
insulation properties of LapO particles, this effect leads to significant reduction in
the number of electric contacts between the nanotubes.

The e0(c) dependences are shown in Fig. 18.3. It can be seen that e0 mono-
tonically grows with c and increases by about three times with addition of
0.5 wt % of CNTs. The growth of e0 was observed in both nematic and isotropic
phases, meaning that it is mainly due to the contribution of the polarizability of
nanotubes rather than disturbance of LC orientation by the particles and their
aggregates. This result is consistent with the earlier results indicating the increase
in LC permittivity with addition of a minute amount of CNTs [19]. The e0(c) curve
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for the LC-CNT series is quasi-linear up to 0.3 wt %. The deviation at higher
concentrations c from the linear law can be caused by incomplete filling of CNTs
in the cell, since big aggregates are unable to enter the cell. The e0(c) curve for the
LC-CNT-LapO series is linear over the entire range of CNT concentrations studied
in this work. This might reflect improved dispersion of CNTs in the composites
containing LapO. The linearity of the e0(c) curves suggests that they can be fitted to
Maxwell–Wagner mixing equation

e0 ¼ e0LC þ Kc ð18:2Þ

derived in c � 1 approximation [20]. Here, K is a constant combining permittivity
of LC, e0LC, and CNT, e0CNT. Thus, despite the fact that our system is above the
percolation threshold of conductivity, the Maxwell–Wagner theory still describes
effective permittivity. This interesting fact needs further study.
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18.3.1.2 Dielectric Peculiarities in the Near-Electrode Layers

Figure 18.4 presents the effect of addition of CNTs and CNT-LapO particles on
the time of dielectric relaxation s and the width of the near-electrode layers k of
LC cells. In the absence of LapO, the increase in CNT concentration results in a
sharp decay of s at both T = 20 and T = 80 �C (Fig. 18.4a). Concurrently, a
noticeable increase in k is observed (Fig. 18.4b). A similar tendency was previ-
ously described for the LC 5CB doped with CNTs [3]. It was explained by
reconfiguration of near-electrode dielectric layers in the presence of CNTs and
shunting of these layers by the nanotubes acting as elements of the percolation
network. The described effects are weaker in the LapO-assisted LC-CNTs sus-
pensions. For these samples, the s(c) curve decays, while the k(c) curve grows
according to the exponential law. As it was said above, this may indicate signif-
icant interaction of insulating LapO platelets with CNTs. Apparently, it reduces

0 2 4 6 8 10 12 14 16

0

20

40

60

80

U,V

T,
%

1

3

2

Fig. 18.5 Transmittance
versus voltage curves for the
E7 1, E7-CNT (0.1 wt %) 2
and E7-CNT (0.1 wt %)-
LapO (0.1 wt %) 3 samples

0 0.1 0.2 0.3 0.4 0.5
45

50

55

60

65

70

75

c, wt.%

C
R

,% 2

1

Fig. 18.6 Contrast ratio
versus CNT concentration
curve for the E7-CNTs 1 and
E7-CNTs-LapO 2 series

18 Peculiarities of Liquid Crystal—Carbon Nanotube Dispersions 271



efficiency of electrical contacts between the nanotubes and electrodes, as well as
between the different nanotubes. It weakens the shunting capability of CNTs and,
probably, their interaction with ionic impurities forming the near-electrode layers.

18.3.2 Electro-Optic Properties

The doping by LapO nanoparticles significantly improves electro-optical charac-
teristics of LC-CNT suspensions. The transmittance T versus applied voltage
U curves for the twisted cells filled with pure LC E7, E7-CNT (0.1 wt %), and
E7-CNT (0.1 wt %)–LapO (0.1 wt %) suspensions are presented in Fig. 18.5.
This Figure shows that CNTs mostly affect the saturation value of T. This is
mainly due to absorption of testing light by bulky CNT aggregates. However,
introduction of a small amount of LapO platelets minimizes this effect, making the
T(U) characteristic of LC-CNTs sample close to that of pure LC. Due to
improvement of the saturation value of T, the samples containing LapO show
higher electro-optic contrast than their LC-CNT counterparts (Fig. 18.6). Finally,
we detected inessential decrease in Frederiks’s threshold (DUF *0.1 V) in the
LapO-assisted LC-CNT suspensions (Fig. 18.7).

18.4 Conclusions

The effect of nanoparticles of organically modified laponite on dielectric and
electro-optic properties of the dispersions of multi-walled carbon nanotubes in a
nematic LC E7 is investigated. It is found that introduction of a small amount
(0.1 wt %) of LapO platelets in an LC-CNT suspension results in essential
changes in dielectric properties. In particular, the introduced LapO particles
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considerably suppress the percolation character of conductivity and extend the
range of linearity of the permittivity versus CNT concentration curve. Further-
more, addition of LapO particles weakens the effect of CNTs on the parameters of
the near-electrode layers: changes in the time of dielectric relaxation and thickness
of the near-electrode layers become more gradual and thus more controllable with
increase in CNT concentration. Finally, the LapO-assisted LC-CNTs dispersions
demonstrate considerably improved electro-optic characteristics, such as better
switching contrast and reduced threshold voltage. Thus, the proposed approach
is rather effective for optimization and diversification of the properties of LC
dispersions of CNTs.
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