
  

Photoinduced helical inversion in cholesteric 

liquid crystal cells with homeotropic anchoring 

Igor Gvozdovskyy,
1,4

 Oleg Yaroshchuk,
1,*

 Marina Serbina,
2
 and Rumiko Yamaguchi

3
 

1Institute of Physics of the National Academy of Sciences of Ukraine, Prospekt Nauki, 46, 03680 Kyiv, Ukraine 
2Institute for Scintillation Materials of STC “Institute for Single Crystals” of the National Academy of Sciences of 

Ukraine, Lenin Ave., 60, 61001 Kharkiv, Ukraine 
3Akita University, Department of Electrical and Electronic Engineering, 1-1 Tegatagakuen-cho, Akita 010, Japan 

4 igvozd@gmail.com 
*o.yaroshchuk@gmail.com 

Abstract: Structural changes caused by the optically induced helical 

inversion in the cholesteric liquid crystal cells with homeotropic anchoring 

are studied. In a one-step exposure, a sequence of structural transformations 

“lying left-handed helix – unwound homeotropic state – lying right-handed 

helix” is realized. In this process, smooth expansion of a left-handed helix, 

transition to an unwound state, emergence and smooth compression of a 

right-handed helix was observed. The unwound state was maintained over a 

rather wide range of exposures. Well-oriented and highly periodic 

fingerprint textures capable of the above mentioned structural changes were 

obtained by rubbing the aligning substrates. This allowed for obtaining 

photo-tunable diffraction gratings and using them to demonstrate new beam 

steering principle. Also, pitch reversal suggested new options for optical 

recording, in particular contrast reversal and edge enhancement. 
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1. Introduction 

Most practically used cholesteric liquid crystals (CLCs) are prepared on the basis of nematic 

liquid crystal (LC) mixtures doped with chiral additives, which induce a helical structure. 

They are called induced CLCs [1,2]. Depending on the nature of chiral dopant (ChD) and its 

interaction with the molecules of the nematic host, the cholesteric helix can be right- or left-

handed. Like nematic LCs, cholesteric liquid crystals can form planar or homeotropic textures 

owing to different anchoring conditions at the aligning surfaces [1–3]. 
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In the planar texture of the CLCs, the helical axis is perpendicular to the surface of the LC 

cell, and the phenomenon of selective light reflection (Bragg diffraction regime [4]) is 

observed with a maximum wavelength λmax = np, where n and p are the average refractivity 

index and the pitch of cholesteric helix, respectively. The helical pitch p is sensitive to 

temperature changes and external fields, which is the basis for various practical applications 

of CLCs (displays, thermal sensors, adjustable color filters and reflective polarizers, voltage-

controlled light attenuating films, mirrorless lasers, etc.) [5–11]. 

The homeotropic texture of the CLCs, also known as fingerprint texture, is observed when 

the helical axis is parallel to the plane of LC cell. It should be noted that despite the fact that 

this texture is commonly associated with a pronounced homeotropic anchoring, it is 

frequently observed on the substrates not subjected to any alignment treatment, which seem to 

provide a weak homeotropic or even planar anchoring [12,13]. The spatial period and 

uniformity of these textures can be controlled by varying cell thickness d, pitch p, elastic 

constants of LC, anchoring coefficients, etc [14–20]. With a successful combination of these 

parameters and appropriate alignment treatment, highly uniform structures with regular and 

well-oriented patterns (fingers) can be formed. If the cell is subjected to external electric or 

magnetic field, a structural transition from the fingerprint to homeotropic or planar texture of 

a nematic LC can occur due to the coupling of the electric/magnetic field to the 

dielectric/magnetic anisotropy of LC [21]. In turn, the field action on the cells with planar 

anchoring may result in the transition from planar to fingerprint texture [15,17,20]. In case of 

well-oriented patterns this structure acts as a switchable diffraction grating (Raman-Nath 

diffraction regime [4]). The advantage of such gratings, as compared with other types of LC 

gratings, is the ability to quickly change the grating period. This, in turn, makes it possible to 

realize steering of light beams [15,18]. 

It has been shown that the lying cholesteric helix can be distorted or even completely 

suppressed when CLC is confined in a LC cell with sufficiently strong homeotropic anchoring 

[16,22]. There is a certain minimal helical pitch value: 

 22

33

2th

K
p d

K
=  (1) 

(K22 and K33 are elastic constants for twist and bend deformations, respectively), which can be 

achieved in a given cell [23]. If p is smaller than this threshold pitch pth, the chiral torque is 

strong enough with respect to the elastic torque determined by orientational elasticity and 

anchoring, and twisted cholesteric structure can be observed. When p> pth, the chiral torque is 

too weak and the system is not able to twist. In this case, homeotropic structure of nematic LC 

is observed. 

Besides temperature variation and application of electric or magnetic fields, the 

cholesteric helix can also be efficiently controlled by light. The optical controlling offers 

several advantages, such as quick and smooth variation of structures and ease of patterning. 

Since initial and photoinduced structures have distinct optical properties, the photoaddressable 

CLCs are highly significant for optical recording systems, all-optical displays, 

photoadjustable light reflectors, etc. These devices do not require patterned conductive 

coatings (electrodes) and attached electronics that substantially reduces costs comparing with 

electronically driven counterparts. Besides, the resolution of these devices is rather high; it is 

limited only by the domain size of the cholesteric phase (~1–2 µm) [24–26]. 

The main attention was previously paid to the planar textures, where a phototunable 

selective reflection could be realized [24–33]. This effect occurs due to the photoinduced 

change in conformation of ChD or LC host that affects twisting tension and, eventually, 

helical pitch in CLC. 

In one of the few works related to photoinduced effects in the homeotropic texture, a 

transition from the fingerprint cholesteric to the nematic texture was observed [34]. In this 
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work, the authors used an induced CLC based on nematic LC 4-cyano-4’-pentylbiphenyl 

(5CB) and ChD 2-(4'-phenylbenzylidene)-p-menthane-3-one (PBM). UV irradiation caused 

trans-cis isomerization of PBM molecules [35], which resulted in a substantial decrease in 

their helical twisting power (HTP). When the pitch p exceeded the threshold value pth, helix 

was completely suppressed and instead the nematic homeotropic texture was observed. 

The aim of this work was to extend a sequence of photo-induced structural transitions in 

the CLC cells with homeotropic anchoring. This is achieved through the implementation of 

the cholesteric helix inversion, which was earlier attained in the cells with planar alignment 

[28,29,31,32] as well as in the non-aligned samples [13]. In this way, the photo-induced 

unwinding of lying cholesteric helix is completed by the transition from the unwound 

(nematic) structure to the lying cholesteric helix with the opposite sense. By proper alignment 

treatment of homeotropically aligning substrates, well aligned fingerprint textures (diffraction 

gratings in optical sense) that undergo structural transformations mentioned above are 

obtained. We demonstrate that these results give additional options for optical recording in 

CLC and suggest a new beam steering principle. 

2. Idea and experimental details 

In the literature, several methods of inversion of the cholesteric helix are described. In 

[28,31,32] the inversion is realized by using single ChD. Photo-excitation of these molecules 

leads to their conversion to another isomeric form, characterized by the chirality of the 

opposite sense. 

In contrast, we used the two-dopant approach similar to that described in papers [25,29]. 

With this approach, the cholesteric mixture contains two CDs of opposite chiralities so that 

the resulting helix is left- or right-handed, depending on relative concentration of the dopants. 

One of these dopants is photosensitive, while the other one is insensitive to the light that 

causes excitation of the first dopant. In the initial state, the concentrations of these dopants are 

chosen so that the twisting direction is determined by the photosensitive ChD. The irradiation 

depletes the photosensitive ChD, resulting in weakening of the twisting tension caused by this 

dopant and unwinding of cholesteric helix. At a certain exposure dose, twisting tensions 

caused by the two dopants cancel each other and thus completely unwound (nematic) 

structure is observed. The following exposure results in further depletion of photosensitive 

ChD. The elastic torque caused by this dopant becomes weaker than the torque caused by the 

non-photosensitive dopant, which leads to twisting of LC in the direction opposite to the 

initial one. The new-formed helix strengthens with further irradiation. 

To realize this scenario we used the right-handed ChD ZLI-3786 (R811) obtained from 

Merck and the left-handed ChD PBM synthesized at Institute for Singe Crystals, NAS of 

Ukraine [35]. UV spectra of the dopants in hexane solution (C = 10
−4

 mol/l) before and after 

UV irradiation are shown in Fig. 1. 

In these measurements the solutions were placed in quartz cuvettes with a thickness d = 1 

cm and irradiated with a full spectrum UV light, directly or through the glass plate. This plate 

was used as a filter cutting off the light with wavelengths shorter than 300 nm. As seen from 

Figs. 1(a) and 1(b), under full-spectrum UV irradiation, absorption band of each dopant 

decreases, i.e., both dopants are involved in photoreactions. At the same time, when the short-

wavelength range (UV radiation with λ<300 nm) is cut off, only PBM dopant undergoes 

photoconversion (Figs. 1(c) and 1(d)). According to [35], this process is trans-cis 

isomerization, and HTP of cis-isomer is much lower than that of trans-isomers. Thus, when 

irradiated through a glass filter, the left-handed dopant PBM can be considered as a 

photoreactive, while the right-handed dopant R811 as a non-photoreactive one. The same is 

true for the CLC based on these dopants confined in the glass cells, because the glass 

substrates act as cut off filters for the shortwave UV light. This suggests that ChDs are 

correctly selected for using in glass LC cells. 
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Fig. 1. Absorption spectra of PBM (a, c) and R811 (b, d) in hexane solution before and after 

UV irradiation. Spectra (a, b) correspond to direct irradiation, and (c, d) to irradiation through a 

glass plate. Numbers 1 and 2 stand for the spectra before and after 45 min irradiation, 

respectively. 

The chiral dopants were dissolved in nematic LC MLC6884 (Merck) with negative 

dielectric anisotropy. The cholesteric mixture was prepared with concentrations CPBM = 1 wt. 

% and CR811 = 1.8 wt. %. In addition, as reference samples, the corresponding single chiral 

dopant mixtures were prepared. 

To obtain homeotropic alignment of CLC, we used polyimide SE1211 (Nissan, Japan). 

The polyimide films were deposited on glass substrates by spin-coating method (3000 rpm, 30 

s), then annealed (180°C, 30 min) and, if necessary, unidirectionally rubbed. Using these 

substrates the cells with antiparallel rubbing directions were assembled with a cell thickness d 

set by mylar spacers and verified by the interference method. In studies of structural 

transformations under UV radiation d was 10, 16 and 20 µm, while in laser beam diffraction 

experiments it was fixed at 18 µm. 

Additionally, to estimate the helical sense of the cholesteric mixtures for various exposure 

doses, wedge-like cells with planar anchoring conditions were prepared. The planar anchoring 

was provided by films of polyimide AL3046 (JSR, Japan), which were prepared by spin-

coating method (3000 rpm, 30 s), annealed (190°C, 60 min) and unidirectionally rubbed. The 

thickness of wedge-like cells was about 20 µm. The helical sense was determined by Cano-

Grandjean method as described in [36]. 

Illumination of LC cells was carried out by a high-pressure UV lamp UV-P 280 (Panacol, 

Germany). The integrated UV radiation intensity was 40 mW/cm
2
. The LC textures were 

observed by using a polarizing microscope Biolar (Poland) equipped with a digital camera 

Nikon D80 (Japan). The UV absorption spectra prior to UV irradiation and after fixed 

exposure doses were recorded in 230-450 nm range using a Hitachi 330 spectrophotometer. 
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Diffraction gratings based on fingerprint textures were characterized by studying 

diffraction of He-Ne laser beam traversing the LC cell. The intensities of the incident beam, 

I0, and the first-order diffraction beam, I1, were measured by photodetector and used to 

calculate the first order diffraction efficiency η according to formula η = I1/I0. 

3. Results and discussion 

Figure 2 shows the cell based on non-rubbed PI layers for homeotropic alignment, which is 

filled with the cholesteric mixture MLC6884/PBM/R811. The periphery part of this cell is a 

non-irradiated area showing the texture of the initial left-handed cholesteric LC. The three 

vertical strips are the areas subjected to different exposure doses. Area 1 irradiated for 5 s 

demonstrates cholesteric structure with a left-handed helix. Area 2 irradiated for 120 s 

corresponds to unwound (nematic) state. Finally, area 3 irradiated for 300 s corresponds to the 

right-handed helix. The sense of the cholesteric helix for each exposure dose was determined 

by using a wedge cell with planar anchoring. 

 

Fig. 2. Photograph of LC cell (d=20 µm) with homeotropic anchoring filled with the 

cholesteric mixture MLC6884/PBM/R811. The cell is irradiated through a proximity mask 

with UV light so that the exposure time is 5, 120 and 300 s in areas 1, 2 and 3, respectively. 

These areas represent (1) a left-handed cholesteric LC, (2) nematic LC and (3) a right-handed 

cholesteric LC. The cell is viewed between two crossed polarizers. 

 

Fig. 3. Microphotographs corresponding to areas 1, 2 and 3 in Fig. 2; (a) fingerprint texture of 

a left-handed cholesteric LC, (b) compensated nematic texture, and (c) fingerprint texture of a 

right-handed cholesteric LC. 

The microscopic images corresponding to areas 1, 2 and 3 in Fig. 2 are presented in Fig. 3. 

In areas 1 and 3 the fingerprint textures are observed. These textures are not well aligned, 

because aligning layers in the cell are not rubbed. Some alignment in these areas is caused by 

directional filling of CLC in the cells. The period of the textures is equal to helical pitch. The 
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photo-switching from a left-handed to a right-handed helix occurs through the unwound state 

that is reasonable from topological point of view. 

The helical pitch values, p, were determined from the fingerprint texture periods for 

different exposure times, τexp. The p vs. τexp plots for the single-dopant mixtures, 

MLC6884/PBM and MLC6884/R811, and two-dopant mixture MLC6884/PBM/R811 are 

shown in Fig. 4, case (a) and (b), respectively. For the MLC6884/R811 mixture, the pitch p is 

independent of the exposure time, while for the MLC6884/PBM mixture it monotonically 

grows with τexp (Fig. 4(a)). Thus, HTP of PBM is photocontrolled, while that of ChD R811 is 

insensitive to UV light. This further confirms that chiral dopants were chosen properly. 

 

Fig. 4. The pitch length vs. exposure time curves. (a) Single-dopant cholesteric mixtures 

MLC6884/R811 (curve 1) and MLC6884/PBM (curve 2) in the cells with thickness d = 16 µm. 

(b) Two-dopant cholesteric mixture MLC6884/PBM/R811 in the cells with d = 10, 16 and 20 

µm, curves 1, 2, and 3, respectively. Open symbols correspond to left-handed helical 

structures, and solid symbols denote the right-handed helical structures. The areas highlighted 

in gray correspond to unwound cholesteric structure realized for the PBM containing mixtures 

in the cells with d = 10 µm. The inset depicts the ascending branches of p(τexp) dependences in 

an enlarged scale. 

For the two-dopant mixture MLC6884/PBM/R811 the p(τexp) dependence consists of two 

branches shown in Fig. 4(b). The initial ascending branch (open symbols) corresponds to the 

left-handed helical structures, while the descending branch (solid symbols) is associated with 

the helical structures of the opposite sense. The branches of the p(τexp) curve are separated 

with a distinct range of exposure time corresponding to doses for which the unwound state 

rather than helical state is realized. 

As can be seen from Fig. 4(b), the pitch p of the two-dopant mixture is tuned in a rather 

wide range – from 35 to 50µm (a left-handed helix) and from 50µm to 17µm (a right-handed 

helix), and this range depends on the cell thickness. 

The observed behavior of p(τexp) curves suggests that the structural transformations in the 

samples occur according to the scenario earlier conceived. The ascending branch of the p(τexp) 

curve reflects the UV-induced unwinding of the initial left-handed helix. This is due to trans-

cis photoisomerization of PBM leading to weakening of twisting tension caused by this 

dopant. The descending branch is associated with the helix of opposite sense caused by the 

R811 dopant. An important difference compared to the previously conceived scheme is that 

the transient unwound state is formed in a wide range of exposure doses, rather than at some 

fixed dose. This range of doses corresponds to the range of inaccessible values of pitch, p> 

pth. In other words, the structures associated with weak twisting stress (large helical pitch), 

cannot be realized. We attribute this primarily to a strong homeotropic anchoring in our cells. 
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The situation is similar to the surface stabilized layers of ferroelectric LCs, in which strong 

anchoring suppresses helix of smectic C* phase [37]. 

As can be seen from Fig. 4(b), the p(τexp) dependencies for the cells with different 

thicknesses are essentially different. For all scale of irradiation time, the helical structure 

period increases with the cell thickness d. In our opinion, the only feasible reason for such 

behavior is one-side irradiation. It is assumed that the trans-cis photoisomerization of PBM 

molecules occurs non-uniformly across the cells, because the light beam, passing through the 

LC, is attenuated. This effect becomes more pronounced with larger cell thickness. In order to 

verify our assumption, the gradient of light intensity across the cells was minimized by 

simultaneous irradiation of cells from two sides. In agreement with our assumption, the period 

of textures in the 16 µm and 20 µm cells after prolonged irradiation approached the period 

value as in a 10 µm cell. Extension of the range of exposure doses corresponding to unwound 

state and its shift to higher doses with a cell thickness, d, may also be attributed to non-

uniformity of photoconversion of PBM molecules across the cells. As can be seen in Fig. 

4(b), the threshold value of pitch pth increases with the cell thickness d in agreement with the 

theoretically derived expression (1). 

 

Fig. 5. The photoinduced inversion of optical images in CLC cell with homeotropic anchoring. 

The 10 µm cell based on non-rubbed SE1211 alignment layers and filled with CLC 

MLC6884/PBM/R811 is viewed between crossed polarizers (picture 1). At first the cell is 

irradiated during 40 s through a mask with the transparent areas in an “IOP” form (picture 2) 

and then during 40 s entirely (picture 3). As a result, image 3 is inversed to image 2. 

The implemented sequence of cholesteric-nematic-cholesteric structural transitions 

suggests a unique principle for recording and processing of optical images in CLC cells, 

particularly interesting for all-optical displays. The distinctive feature of this process is the 

possibility of contrast reversal, when light areas become dark and vice versa. An example of 

this approach is demonstrated in Fig. 5. In this example, the cell based on non-rubbed 

alignment layers of PI SE1211 and filled with CLC MLC6884/PBM/R811 (picture 1) is 

irradiated through a mask with the transparent areas in the form of “IOP” letters. After a short 

exposure, the “IOP” letters switch to a compensated nematic phase and become black, 

contrasting well with the cholesteric texture (background in picture 2). In this picture, the 

edge enhancement is also observed, which is apparently due to partial unwinding of the left-

handed helix on the border with the compensated nematic area. After further irradiation of the 

cell without a mask, in the background a left-handed cholesteric LC switches to the 

compensated nematic LC, while the compensated nematic in “IOP” shaped areas switches to a 

right-handed cholesteric LC. Due to intensive light scattering, these areas contrast with a dark 

background (picture 3). The latter image is negative to the former one, i.e., through light 

irradiation the contrast reversal is attained. 

It should be noted that along with the cells containing patterns of cholesteric and nematic 

textures, the cells with the patterns of left-handed and right-handed cholesteric textures can be 

obtained. However, the latter patterns are not stable enough due to diffusion of ChDs leading 

to mutual destruction of helices with the opposite sense. It seems possible to stabilize such 

structures with polymer networks and walls [38]. 

Subsequently, the series of structural transitions described above was implemented for 

oriented textures. To attain oriented fingerprint textures, the aligning layers were 

unidirectionally rubbed. At optimized rubbing conditions, well-oriented and highly periodic 
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textures were obtained. Figure 6(a) shows that these textures change, passing the steps 

previously observed for non-oriented textures. 

 

Fig. 6. (a) Microphotographs of aligned fingerprint textures (gratings) formed after different 

exposure times. Thickness of LC cell is 18 µm. Observation under crossed polarizers. (b) 

Diffraction patterns corresponding to gratings in Fig. 6(a). 

The oriented fingerprint textures act as transmissive diffraction gratings with a period Λ 

equal to the cholesteric pitch p. The grating period change under irradiation (Fig. 6(a)) is 

accompanied with a nonmonotonic change of diffraction efficiency η and diffraction angle θ 

(Fig. 7). Unwinding of cholersteric helix, i.e., the increase of Λ with τexp (τexp < 10 s) is 

accompanied with increasing of diffraction efficiency η (solid squares) and decreasing of 

diffraction angleθ (open squares). The range τexp = 10-30 s corresponds to the compensated 

nematic state, where diffraction of light is not observed. The dependences shown in Fig. 7 by 

solid and open circles (τexp > 30 s), reflect emergence of a right-handed cholesteric helix and 

its compression with exposure time. 

 

Fig. 7. Diffraction efficiency (a) and diffraction angle (b) as function of exposure time for 

periodic structure of CLC MLC6884/PBM/R811 in the 18 µm cell with rubbed layers of 

homeotropic polyimide. In the plots, the area highlighted in gray corresponds to unwound 

cholesteric structure (absence of grating). 

This process results in a wide-range controlling of diffraction efficiency (η = 0-30%, Fig. 

7(a)) and diffraction angle (θ = 9°-23°, Fig. 7(b)). The latter result suggests a new principle of 

beam steering when the beam direction is controlled by light rather than heating or electric 

field [15,18]. Using samples with helical inversion, the beam can be deviated in one direction 

or successively in two opposite directions just in one-step exposure (Fig. 8). 
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Fig. 8. Single-frame from a Media 1 demonstrating new beam steering principle. The left 

picture shows changing of fingerprint grating and the right one shows a change in position of 

diffraction patterns with exposure time. 

Of course, the practical implementation of the proposed principles is associated with 

improvement of periodic structures. Their heterogeneity, especially for small periods, 

increases losses and deformation of beams, primarily due to the scattering of light. This 

problem is particularly essential for τexp = 130 s in Fig. 6. Further optimization of chiral 

dopants and their ratio in LC is also important. The weak point of the studied CLC mixtures is 

irreversible photoconversion of molecules of ChD. The use of ChDs with reversible 

photoconversion can allow us to attain reversible changes in the grating parameters, in 

particular, polycyclic changes in the efficiency and diffraction angle. For this purpose, chiral 

dopants providing a broad-range reversible variation of cholesteric pitch are especially 

promising. For planar CLC textures, such dopants have been recently tested in [31,32]. 

4. Conclusions 

Thus, a light-induced inversion of helical sense accompanied with a smooth and broad-range 

variation of helical pitch and a sequence of photoinduced structural transitions “left-handed 

cholesteric LC - nematic LC - right-handed cholesteric LC” is realized in LC cells with 

homeotropic anchoring. As well as the cholesteric phases, the compensated nematic phase 

was stable and it was observed in a rather wide range of exposures. By a proper rubbing 

treatment of homeotropically aligning layers, well-aligned fingerprint textures undergoing the 

same sequence of structural transformations are obtained. Based on these results, optical 

controlling of CLC gratings is realized and used to develop a new beam steering principle. It 

is also demonstrated that pitch reversal provides additional opportunities for optical recording 

in CLC, such as contrast reversal and edge enhancement. One can expect that new features of 

the studied samples will be discovered at their electric addressing [26]. 
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