

Effect of alternative treatments methods on the electronic structure of ZrO_2 -TiO₂

Zaika V.V., Sachuk O.V., Karbivskii V.L.

G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Boulevard, UA-03142 Kyiv, Ukraine. E-mail:<u>zaikavladimir228@gmail.com</u>

Idea	Method								
Use of the XPS method to study the feature of the electronic structure ZrO ₂ -TiO ₂ -based	X-ray spectrometer: "JEOL" JSPM-4610. Work pressure no less then 10 ⁻⁷ Pa.								
composites before and after mechanochemical and ultrasonic treatment.	X-ray source Mg K_{α} 1253.6 eV.Energy resolution 0.1 eV.								
Results									
To evaluate the distribution of components in the surface layer of the composites, a quantitative analysis was performed using the integral intensities of the XPS spectra -									
O1s, Ti 2p _{3/2} and Zr 3p _{3/2} taking into account the effective scattering cross sections (Table 1). Since the mechanical treatment showed a greater amount of oxygen on the									
surface, and considering the fact that there is a significant covalent chemical bonding component in these oxygen oxides, it can be assumed that there is an increase in									
the corrosion resistance of the composite.									
Table 1. Chemical composition of the surface according to XPS (at.%).									

Element	O, %	Ti ,%	Zr,%	Ti/Zr
Sample				
Initial sample	62.00	21.57	16.43	1.31
After machining treatment	65.83	18.43	15.74	1.17
After ultrasonic treatment	63.58	19.17	17.25	1.11

The dependence of the chemical shift on particle size has been studied [1]. A logarithmic dependence of the chemical shift value of the X-ray photoelectron line of metal $\Delta E_b(eV)$ on the particle area was established, where S_{part} - is the particle area on the surface, and S_0 - is the area of particles that do not experience the size energy shift.

$$\Delta E_b = ln(\frac{S_0}{S_{part}})$$

Using this formula for the peaks of titanium and zirconium, the ratio between the areas of the particles relative to the original sample was determined (Table 2). Table 2. Ratio of particle areas relative to the original sample.

	Ti 2p _{3/2} , (eV)	Zr 3p _{3/2} , (eV)	ΔΕ(Ti), (eV)	ΔE(Zr) , (eV)	S ₀ /S _p (Ti 2p)	S ₀ /S _p (Zr 3p)
Initial sample	456.21	333.09	-	-	-	-
After machining treatment	458.07	331.87	1.86	1.22	6.42	3.39
After ultrasonic treatment	456.72	331.67	0.51	1.42	1.67	4.14

The change in the Ti $2p_{1/2}$ - Ti $2p_{3/2}$ splitting indicates a significant change in the first coordination sphere of the element. The 0.15 eV increase in Ti $2p_{1/2}$ - Ti $2p_{3/2}$ distance may indicate a possible phase transition (Table 3). Thus, it can be assumed that after the ultrasonic treatment, part of the sample experienced the anatase-rutile phase transition.

Initial sample 5.78 eV **After machining treatment** 5.74 eV After ultrasonic treatment 5.93 eV Ti2p Ti2p Ti2p 457.1(1.35) 458.3(1.2) 456.0(1.28) 456.2(1.35) 461.9(2.10) 464.0(2.1) 457.5(1.2) 462.8(2.10) 461.7(2.15) 456.7(1.39) 463.2(2.1) 462.4(2.15) 470 465 450 460 455 470 460

Table 3. Ti $2p_{1/2}$ - Ti $2p_{3/2}$ splitting

470	465	460	455	450	470	465	460	455	450	470	465	460	455	450
	B.E.(eV)					B.E.(e	V)				B.E.(e	V)		
XPS Ti 2p initial sample				XPS Ti 2p after machining treatment					2	XPS Ti 2p after ultrasonic treatment				
							<u> </u>							
The effect At mechar composite In the pro	of different nochemicate leads to a leas of ul	nt treatment al treatment significant ltrasonic tre	t methods, of sample increase i eatment, th	in particula es, the incre n corrosion here is an i	ar, mechanociase in oxyge resistance concrease in the	hemical and n is 3.83 at ompared to us to contribut	d ultrasonic . %, and at ultrasonic tr tion of surfa	treatment of ultrasonic t eatment. ace atoms	of ZrO_2 -TiO_2 treatment - 1. of titanium a	composites of .58 at. %. Th and a decrease	on the elect us, the med se in the c	cronic struc chanical tre contribution	ture was in eatment of of surface	vestigated. ZrO_2 -Ti O_2 e atoms of
zirconium treatment Both mecl sample. I	there is an the int there is an hanochemi During the	increase in ical and ultr processing	the nanoc casonic pro of the con	netal spectra erystalline X ocessing of oposite, part	a. This effect (-ray amorphoton) the ZrO_2 -TiO c of the titaniu	t can be attous phase o P_2 composite am oxide m	of titanium o e contribute ay have exp	to a more lact that the fact that a side and a side and a side and a side a sid	t during ultra relative decre homogeneous phase transiti	asonic treatmease in the X- s composition ion from anat	ray amorpl of the contrast to rutil	nparison w hous phase nposite con e.	of zirconiunpared to t	nochemical um. he original

[1] Surf. Interface Anal. – 2010. – V. 42, No. 6-7. - 850–854

