

حامعة محمد يوضياف - المسيلة Université Mohamed Boudiaf - M'sila

10th jubilee International Conference "Nanotechnologies and Nanomaterials" NANO-2022

Structural, Elastic and Thermodynamic Properties of Ag-Based Oxides XAgO (X = Li and Na): An *ab initio* Study

Djamel ALLALI^{1,2, \vee,}, Rabie AMARI³, Bahri DEGHFEL⁴, Ammar BOUKHARI1³

¹Physics and Chemistry of Materials Lab, Department of Physics, University of M'sila, 28000, M'sila, Algeria. ² University of M'sila, Faculty of Technology, B.P. 166 Ichbilia, 28000, M'sila, Algeria. ³Laboratory of Materials and Renewable Energy, Faculty of Sciences, Mohamed Boudiaf University of M'sila, 28000, M'sila, Algeria. ⁴ University of M'sila, Faculty of Science, Department of Physics, 28000, M'sila, Algeria. E-mail address: djamel.allali@univ-msila.dz and allalidjamel@yahoo.fr

ABSTRACT

Structural parameters, elastic constants and thermodynamic properties of the tetragonal ternary Ag-based oxides LiAgO and NaAgO are investigated theoretically for the first time using the plane-wave ultra-soft pseudopotential method [1] based on the density functional theory [2,3]. The optimized lattice parameters and atomic positions agree well with the available theoretical and experimental counterparts. Pressure dependence of the structural parameters is also explored. Pressure dependences of the single-crystal elastic constants Cij for LiAgO and NaAgO are explored. The elastic wave velocities propagating along the principal crystallographic directions are numerically estimated. The elastic anisotropy is estimated and further illustrated by 3D-direction-dependent of the Young's modulus. A set of some macroscopic elastic moduli, including the bulk, Young's and shear moduli, Poisson's coefficient, average elastic wave velocities and Debye temperature, were calculated for polycrystalline LiAgO and NaAgO from the Cij via the Voigt-Reuss-Hill approximations [4–6]. Through the quasiharmonic Debye model [7], which takes into account the phonon effects, the temperature and pressure dependencies of the bulk modulus, unit cell volume, volume thermal expansion coefficient, Debye temperature and volume constant and pressure constant heat capacities of LiAgO and NaAgO are explored systematically in the ranges of 0–20 GPa and 0–1200 K.

The present calculations are carried out through the pseudopotential plane-wave method (PP-PW) as implemented in the CASTEP code [8]. The exchangecorrelation interactions is treated by the PBEsol version of the generalized gradient approximation (the so-called GGA-PBEsol) [9]. An ultra-soft Vanderbilt-type pseudopotential is used to model the potential created by the nucleus and frozen electrons which applied to valence electrons. The Li: 1s²2s¹, O: 2s²2p⁴, Ag: 4d¹⁰5s¹ and Na: 2s²2p⁶3s¹ electrons are treated as valence electrons. The plane-wave (PW) basis set, in which the electron wave functions are expanded, are truncated at a maximum plane-wave energy (E_{cut}) of 400 eV. The Brillouin zone is sampled by Monkhorst–Pack special k-mesh.

The optimized structural parameters are reached through the Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization technique geometries [10]. The optimization convergence for energy change, maximal force, maximal stress and maximal displacement are fixed at 5×10⁻⁷ eV/atom, 0.01 eV/Å, 0.02 GPa and 5.0 × 10⁻⁴ Å, respectively. Gaussian scheme with a smearing width equal to 0.1 eV is used for the smearing of the electronic occupation. The finite strain-stress method is used to obtain the monocrystalline elastic constants (C_{ii} s) from which the polycrystalline elastic moduli are derived via the Voigt-Reuss-Hill approximation.

STRUCTURAL PROPERTIES

Table 1: Calculated equilibrium lattice parameters (a_0 and c_0 , in Å), internal coordinates $(y_X, x_{Ag} \text{ and } x_0)$, bulk modulus $(B_0, \text{ in GPa})$, bulk modulus first pressure derivative (B') and bond lengths (Ag–O and X–O, in Å) for the ternary Ag-base oxides: LiAgO and NaAgO.

Parameter	Materials				
	LiAgO		NaAgO		
	Present	Expt.	Present	Expt.	
a	9.176	9.248 ^c	9.429	9.522 ^c	
			9.670^b	9.520 ^{d,e}	
С	3.816	3.75 ^c	4.655	4.602 ^c	

Table 2: Calculated elastic constants (C_{ii} , in GPa), Bulk modulus (B, in GPa), shear modulus (G, in GPa), Pugh's indicator (B/G), Young's modulus (*E*, in GPa), Poisson's ratio (σ), Lamé's. coefficient (λ , in GPa), longitudinal, transverse and average sound velocities (V_1 , V_1 and V_2 , respectively, in m/s), and Debye temperature ($\theta_{\rm D}$, in K) for the LiAgO and NaAgO materials. B is obtained from the C_{ii} s. The C_{ii} s of the isostructural compounds are given for comparison.

Parameter	Materials				
	LiAgO	LiCuO	NaAgO	NaCuO	
<i>C</i> ₁₁	116.1	125.5 ^a	82.9	86.4 ^a	
<i>C</i> ₃₃	95.976	94.3 ^a	76.4	73.8 ^a	
<i>C</i> ₄₄	15.8	25.1 ^a	13.6	15.4 ^a	
Ca	60.9	58.7 ^a	34.6	34.7^{a}	

41.8^a

21.3^a

Fig. 3. Temperature dependence of the constant pressure heat capacity and the constant volume heat capacity under the various pressures for LiAgO and NaAgO.

RESULTS

Fig. 4. Temperature dependence of the Debye temperature under the various pressures for LiAgO and NaAgO.

CONCLUSION

- \checkmark *Ab initio* calculations of the structural, elastic and thermodynamic properties for the Ag-based oxides XAgO (X = Li and Na) have been performed in the present work.
- \checkmark Good agreement is found between the optimized lattice parameters and the existing experimental values. An anisotropic behavior of the pressure dependence of the lattice constants is also found.
- \checkmark All studied materials are mechanically stable at zero pressure with a strong elastic anisotropy.
- \checkmark According to Pugh's criterion, all studied materials behave in a brittle manner.
- \checkmark The temperature and pressure dependencies of the bulk modulus, unit cell volume, heat capacity, volume thermal expansion coefficient and Debye temperature are also studied in 0-1200 K and 0-20 GPa ranges via the quasi-harmonic Debye model.

REFERENCES

- . Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism // Phys. Rev. B -1990.- 41.- P. 7892-7895.
- . Hohenberg P., Kohn W. Phys. Rev. B-1964.-136.- P. 684.
- Kohn W., Sham L.J. Phys. Rev. A-1965.-140.- P. 1133.
- Reuss A. Zeitschrift für Angewandte Mathematik und Mechanik-1929.-9.- P. 49-58.
- Hill R. Proc. Phys. Soc. A-1952.-65.- P. 349-354.

Li AgO

Na AgO

★ 05 GPa

