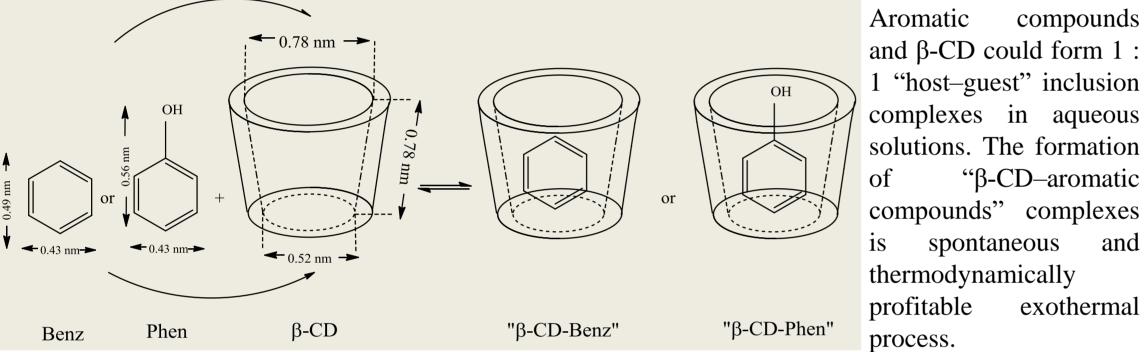
Kinetic and equilibrium studies for the sorption of benzene and phenol from water on functional MCM-41 silicas I.M. Trofymchuk, N.V. Roik, L.O. Belyakova

Chuiko Institute of Surface Chemistry of NAS of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine. *E-mail: trofymchuk_iryna@ukr.net*

Mobile Crystalline Materials (MCM-41):


- regular channel type structures
- □ high surface area
- □ large pore volume and diameter
- excellent hydrothermal, thermal and
- hydrolytic stabilities
- □ active silanols on the surface

amorphous silica

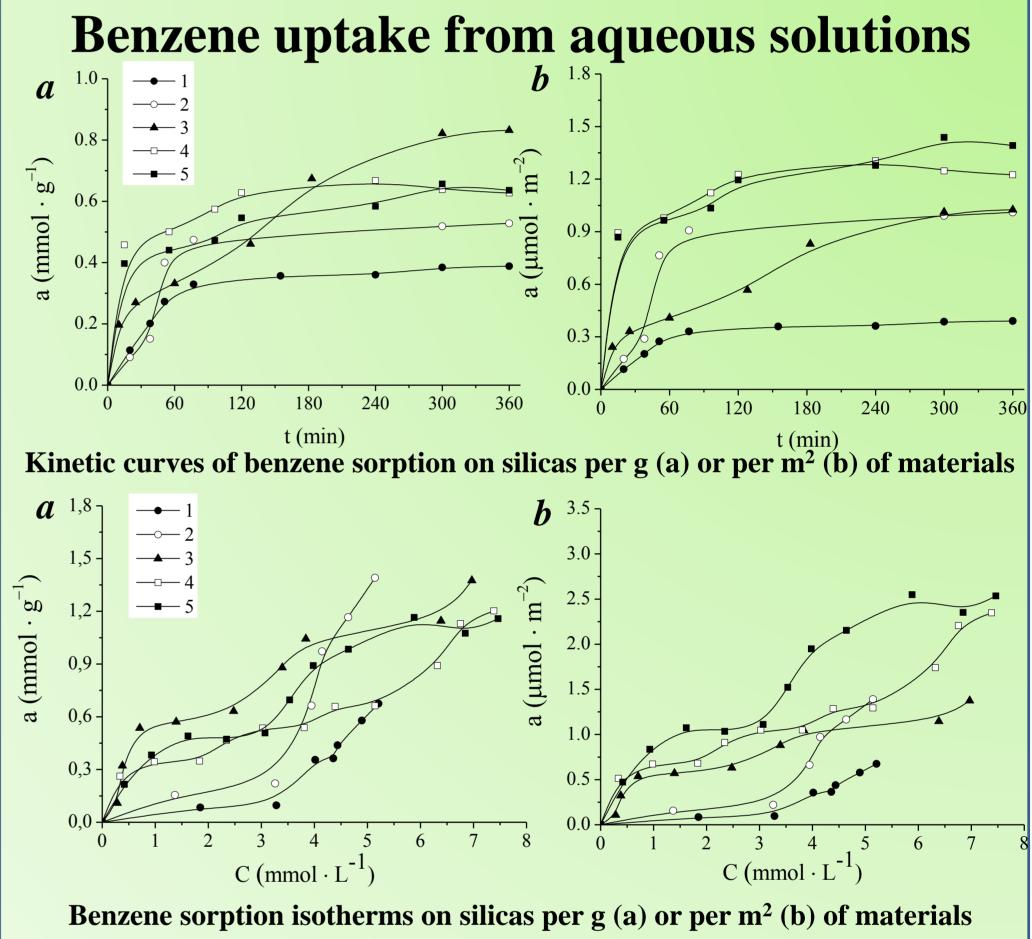
Schwanke, Anderson & Balzer, Rosana & Pergher, Sibele. (2017). Microporous and Mesoporous Materials from Natural and Inexpensive Sources. 10.1007/978-3-319-68255-6_43.

β-Cyclodextrin (β-CD): \Box cyclic oligosaccharide formed of 7 glucopyranose units linked by α -(1,4)-glycosidic bonds torus-like macro-ring with primary and secondary OH-groups on its edges (hydrophilic sites) □ hydrophobic cavity lined with hydrogen atoms and glycosidic oxygen bridges

Benzene and its derivatives are flammable, toxic, carcinogenic and/or mutagenic industrial pollutants, which can contaminate the aquatic environment and drinking water because of theirs high volatility, spreading, and low biodegradability.

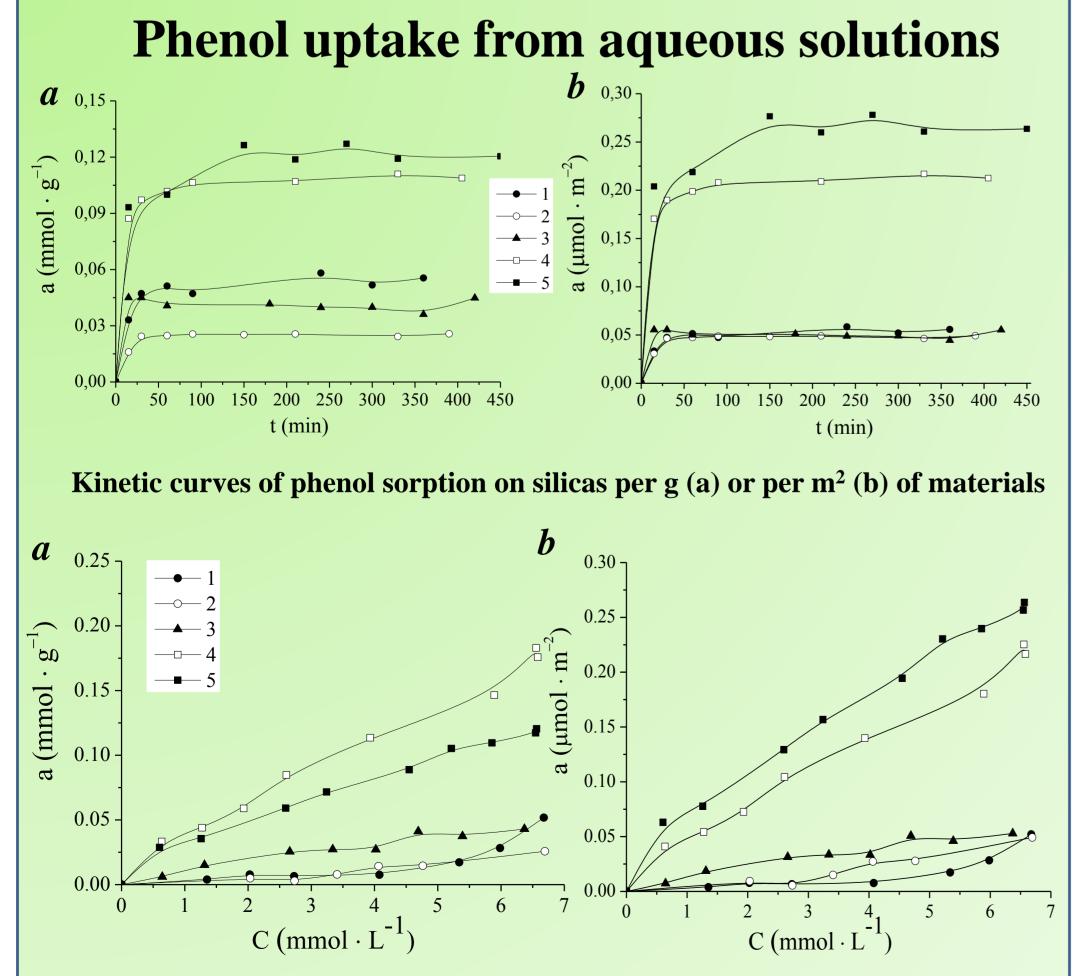
Aromatic compounds and β -CD could form 1 :

spontaneous


"β-CD–aromatic

exothermal

and


In the present work, supramolecular approach of the synthesis of MCM-41 silicas with oligosaccharide units was used for obtaining nanoporous materials with high affinity to aromatic compounds in aqueous solutions.

Method: template-assisted hydrothermal sol-gel synthesis; organosilane with (3-aminopropyl)triethoxysilane preparation by coupling of oligosaccharide using activating agent (N,N'-carbonyldiimidazole); multibatch sorption tests at room temperature.

Chemical composition and structural parameters of synthesized silicas

Silica	X-ray diffraction		Nitrogen adsorption- desorption			Chemical analysis			
	d ₁₀₀ ,	a,	S _{BET} ,	V _t ,	D _{DFT} ,	[-(CH ₂) ₃ NH ₂]		[β-CD]	
	nm	nm	m ² / g	cm ³ /g	nm	mmol/g	µmol/m²	mmol/g	µmol/m²
MCM-41 (1)	4.17	4.82	995	0.75	3.7; 5.1	-	-	-	-
NH ₂ -MCM-41 (2)	4.02	4.64	523	0.86	3.7; 5.1	0.44	0.84	-	-
β-CD-APTES-MCM-41 (3)	4.11	4.75	812	1.06	3.9; 5.1	0.05	0.06	0.018	0.022
β-CD-APTES ₃ -MCM-41 (4)	3.93	4.54	512	0.60	2.5; 3.3; 5.1	0.11	0.21	0.072	0.141
β -CD-APTES ₅ -MCM-41 (5)	4.11	4.74	457	0.69	2.4; 3.1; 4.7	0.12	0.26	0.095	0.208

CONCLUSIONS

- \triangleright MCM-41-type silicas with different content of β -CDcontaining functional groups (in the range 0.018-0.095 mmol/g) were synthesized by hydrothermal sol-gel cocondensation of tetraethyl orthosilicate and oligosaccharide-containing organosilanes in the presence of cetyltrimethylammonium bromide as template.
- ▶ Nitrogen sorptometry experiments exhibited the decrease

Phenol sorption isotherms on silicas per g (a) or per m² (b) of materials

of high surface area (from 812 to 457 m^2/g) and the average pore diameter (from 1.06 to 0.60 cm^3/g) of synthesized silicas with increasing of immobilized oligosaccharide groups.

- The results of sorption experiments proved that β cyclodextrin immobilization on the surface of silicas leads to the increase of aromatic compounds uptake from aqueous solutions.
- ▶ Prepared MCM-41 silicas demonstrate stronger affinity towards benzene than to phenol that could be very promising for selective removing of hazardous compounds in water treatment processes.

