

The aim of this work

Visible light photocatalytic properties of nano-sized tin dioxide doped with iron.

M. Samsonenko¹, S. Khalameida¹, V. Starchevskyy², L. Kotynska¹

¹ Institute for Sorption and Problems of Endoecology, NAS of Ukraine.

E-mail: mashuna.08@gmail.com

² Institute of Chemistry and Chemical Technology, L'viv National Polytechnic University.

The application of nano-sized oxides for photocatalytic degradation is a promising method of wastewater treatment. The use of visible light simplifies and reduces the cost of this process. One of the promising photocatalysts is tin dioxide. To increase the efficiency of its use in photocatalytic processes under the action of visible light, can use its doping with transition metals. It is known that the use of iron as a doped additive to titanium dioxide can increase photocatalytic activity including through inhibition of electron/hole pairs recombination. For SnO₂, this approach has been little studied.

> Study the effect of sonochemical doping on the photocatalytic properties of irondoped tin dioxide.

RESULTS

According to the results of DTA-TG, the initial precipitated sample corresponds to the composition of tin oxohydroxide. Doping by ultrasonic treatment leads to the removal of the OH group. Next thermal treatment of the doped sample promotes this process. All obtained samples have a composition close to SnO_2 .

The doped samples have a more perfect crystalline structure than the initial precipitated sample. Doping and thermal treatment of samples leads to an increase in the size of the crystallites.

Table 1. Tin (IV) oxide porous structure parameters

Samples	S, m²/g	$\mathbf{V}_{\mathbf{\Sigma}}$	V _{ma}	V _{me}	V _{mi}	d _{me}
		cm ³ /g				nm
SnO ₂ precipitated	178	0.09	0.00	0.02	0.07	2.4
+ UST 90°C	206	0.11	0.01	0.02	0.08	2.5
+5%Fe UST 90°C	205	0.25	0.14	0.03	0.08	2.5
+5%Fe UST 90°C+TT300°C	137	0.26	0.09	0.08	0.08	4.7

S - specific surface area, V_{Σ} - pore volume, V_{me} - mesopores volume, V_{mi} - micropores volume, V_{ma} - macropores volume, d_{me} - diameter of mesopores (calculated from the pore size distribution (PSD)

The initial sample is microporous with high value of specific surface area. After UST, an increase in the specific surface area is observed; the total volume and pore size are almost unchanged. The doping with Fe³⁺ has a similar effect. In this case, the doped SnO₂ has porous structure with high the proportion of micropores in the total pore volume, but meso- and macropores are presented. After further thermal treatment occurs: the specific surface area decrease, and the volume and size of mesopores increases (Table). The formation of meso-macroporous structure is observed.

As a result of doping with Fe^{3+} , there are a significant

european profiles³

TRS 1632

553 nm

SnO₂ after UST at 90°C.

0,25 -

0,20 -

💟 Lviv

 \sim

S Bureau

Convention

its photodegradation in the presence of 5%Fe³⁺ + SnO₂ after UST at 90°C.

Springer

 $K_d = 5.1*10^{-5} \text{ s}^{-1}$

520 nm

These transformations of physico-chemical parameters contribute to the increase in photocatalytic activity of iron-doped tin dioxide in processes of the dyes degradation under visible light. The rate constant of rhodamine B and safranin T degradation for Fe-doped SnO₂ is increasing 2-3 times. In addition, in contrast to inactive initial tin dioxide, doped samples exhibit photocatalytic activity during the degradation of 4-chlorophenol under visible irradiation.

This work was supported by the framework of the research project of young scientists from the National Academy of Sciences of Ukraine «Alternative methods of doping SnO₂-based materials to purification of the water environment from pollutants», (contract no :75-09/03-2022).

angers

