

Raman investigations of Cu₂Mg_xZn_{1-x}SnS₄ films with different chemical composition

<u>Yermakov M.S.¹(m.yermakov@ekt.sumdu.edu.ua)</u>, Pshenychnyi R.M.¹, Opanasyuk A.S.¹, Klymov O.V.², Muñoz-Sanjosé V.²

¹ Department of Electronics and Computer Technology, Sumy State University. Rimsky-Korsakov str., 2, Sumy, UA-40007, Ukraine. RALCONVN · ALE

² Department of Applied Physics and Electromagnetism, University of Valencia, C / Dr. Moliner 50, 46100 Burjassot, Spain.

Introduction

Currently, Cu₂ZnSnS₄ is considered a promising material for the absorption layers of solar cells (SC) of the third generation. However, despite a large number of studies, the efficiency of photo converters based on it does not exceed 10%. The main reason for this is the low value of the no-load voltage compared to the width of the bandgap of the material, which is associated with the formation of anti-structural defects Sn_{Zn}. One way to overcome this disorder is to replace Zn with Mg in the crystal lattice of the semiconductor, giving new options based on the Cu₂Mg_xZn_{1-x}SnS₄ compounds.

Methods

To create a precursor, saline solutions in stoichiometric amounts of $CuCl_2 : Zn(CH_3COO)_2 : MgCl_2 : SnCl_2 : (NH_2)_2CS = 2 : 1-x : x : 1 : 4 were slowly added to the thiourea solution. As a result of mixing the initial solutions, transparent molecular precursors with an x value in the range from 0 to 0.4 were obtained. The films were obtained by application using the technique of spray pyrolysis.$

Fig. 1 - Dependence of the chemical composition of Cu₂Mg_xZn_{1-x}SnS₄ films

Fig. 2 - Elemental distribution maps of the sample $Cu_2Mg_{0,4}Zn_{0,6}SnS_4$ surfaces

Fig. 3 - Electron microscopy images of the cross-sections of $Cu_2Mg_xZn_{1-x}SnS_4$ films: x = 0.1 (a); x = 0.2 (b); x = 0.3 (c); x = 0.4 (d)

Fig. 4 - Raman spectra of films of solid solutions $Cu_2Mg_xZn_1_xSnS_4$ doped with magnesium : x = 0.1 (a); x = 0.2 (b); x = 0.3 (c); x = 0.4 (d)

Conclusion

Studies of the elemental composition of the films the following values of the concentrations of C_{Mg} atoms in the samples: 0%, 3.91%, 5.77%, 3.94%, 6.70%;
The Raman investigation of samples with Mg nominal content up to 20% shows that they have three main peaks at frequencies of 295 cm⁻¹, 337 cm⁻¹, and 372 cm⁻¹, which correspond to the reference data for pure kesterite compounds;

With a further increase in Mg content, a new peak intensity appeared at a frequency of 350 cm⁻¹, which may indicate the presence of a secondary phase of Cu₂SnS₄;

• The shift of the A1 peak from the frequency of 337 cm⁻¹ to the frequency of 317 cm⁻¹ was detected, this shift is explained by the replacement of smaller radii of Zn²⁺ ions with larger Mg²⁺ ions.

