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and satisfy the normality condition

In an explicit form, the continuity conditions for the
symmetric states produce four linear homogeneous equations

Using it, the equation for the discrete energy spectrum of s-states
in above-barrier region is written in a form of a determinant

Solving it, a compact analytical equation is obtained

here n=1,2,3,…max n is an index that sequentially numbers the
solutions, which are the energies of symmetric states.

The similar calculations for antisymmetric states in the
above-barrier part of the discrete energy spectrum brings to the
following dispersion equation

from which the energies of a-states are obtained. All
unknown coefficients and are found from the system
(9) and condition (8). Setting them into (4) and (5), we get the
exact analytical expressions for symmetric and antisymmetric
wave functions.

The spectrum and wave functions of the electron for the
case when a wide QW contains a narrow inner well with the
parameters shown in Fig. 1b is obtained in a similar way. As a
result, in the region 0≤E≤V, the dispersion equation for the
energies of s-states

as well as one for the energy levels of a-states

are obtained.
The developed theory makes it possible to control the

values of optical parameters of QWIPs (positions of energy
levels and half-widths of electromagnetic field absorption
bands). These devices are function at the base of many nano
elements, containing two wide quantum wells with identical
potentials (V) and half-widths (A) but different inner wells or
barriers, respectively. Inner wells and barriers are located in the
centers of both wide QWs and have the same potentials (V0) and
half-widths (a1). Wide QWs are far enough so as not to affect the
spectrum of each other's quasiparticles.

Now, the task is to calculate the energy spectrum of
electron (Ew, Eb) in QWs with an inner well (w) and inner
barrier (b) as function of V0 magnitude and geometric size
(А=а1+∆). Then, the average energy values

and the half-width of
electromagnetic field absorption bands are obtained. Here

where and are
the respective energies of the second (2) and first (1) energy
levels in a QW with a barrier (b) and in a QW with a well
(w), which is caused by the highest probability of a quantum
transition from the ground to the first excited state of the
system .

In order to reveal whether there are peculiarities in the
formation of energy spectra, and, since, in QWIPs functioning
depending on the relationship between the effective masses of
electron in wells (mw) and barriers (mb), the calculations were
performed for three types of nanostructures: a) absent (negligible)
difference of masses mb=mw; b) masses are close (mb≥mw), being
typical to the experimental parameters; c) the mass in the barrier is
bigger than the mass in the well (mb=2mw). We should note that
energetic parameters as functions of V0 and geometric sizes (a1, ∆)
are calculated for the region where the energies of the excited
states E2b and E2w would not be much distant from each other and
would not be significantly less than the potential (V) of the QW
for good tunneling of the electron current-generated in the system.

The magnitudes V=300 meV and mw=mb=0.075 are taken
as close to those studied experimentally. The potential V0 and
geometric parameters (a1, ∆) are varied within such limits that the
conditions E1 (b,w)≥ V0 and E2 (b,w) ≤ V are fulfilled. The necessary
conditions for the operation of QWIPs in such energy interval

are strongly limited by the magnitudes of the
potential (V) and the width (2A) of both QWs. The characteristics
of the inner well and barrier (V0, a1, ∆) significantly affect the
values of the average energy and absorption band width

, and therefore, the coefficient (k) of their ratio, which
makes it possible to optimize the operation of QWIPs.

It is revealed that at mw=mb, regardless of values of V and
A parameters for the wide QW and at any values of V0, a1, ∆ of
the inner well or barrier, E1 b> E1 w, and E2 b> E2 w always. It
means that due to the tunneling of an electron from the excited
state (E2b) of QW with an inner barrier into the excited state (E2w)
of QW with a shallow well, a current in corresponding direction
will arise. If A, a1, ∆ magnitudes are fixed and the potential V0
increases (20 meV ≤ V0 ≤ 60 meV), the values of the excited
energies E2b, E1b only increase and E2w, E1w– decrease. However,
when A is constant and а1 increases, with respective decreases of
∆, the magnitudes E2 b і E2 w change at differently. Therefore, the
optical parameters also change differently. If QW width (A)
decreases values increase according to quantum
mechanical considerations.

As a result, it turned out that in the structures with V=300
meV and if the effective masses in barriers and wells are equal (or
very close), double QWIPs could work optimally with QWs of
5nm wide, with an internal barrier and a well with a potential of
V0=60 meV and a width of 4 nm. For bigger widths of QWs, it
would be necessary to apply a large constant electric field to the
structure, which leads to an increase in the dark current, i.e.,
worsens the sensitivity of the system.

An interesting and important condition for the practical
implementation of QWIPs of type (b, c) is shown, in which the
typical ratio between the effective masses (mw< mb) in wells and
barriers is observed. The calculation shows that, unlike to the
structures with mw=mb, in these systems, depending on V0 and
geometric parameters (A, а1), the ratio between the values of the
energies of excited states E2b< E2 w can change to the opposite. At
the same time, in the structure where mb=2mw=0.05 at all values
of A>3nm, the operation of QWIPs is impossible due to the large
difference (V- E2 w), which complicates the tunneling of electrons
between the wells. Only at A=2.5nm (a1=2nm, ∆=0.5nm) the
optimal functioning of QWIP is possible, because beyond these
limits the value of E2w>V, that is, this level falls into the
continuous spectrum.

Analyzing the obtained data, it is clear that only if V0=60
meV, A=2.5nm, at a1=1nm or 2nm, the optimal functioning of
binary QWIPs can occur.

Main results and conclusions
1. The theory of functioning of QWIPs, constructed of two wide
QWs with inner barrier and well, respectively, is developed.
2. The energy spectrum of electron in such nanostructure is
calculated and its properties are revealed depending on energetic
and geometric parameters of typical QWIPs.
3. The limits of the varying geometric parameters of both wide
QWs at which QWIPs operate in the optimal regime are
established. When the first excited levels in both wide wells are
sufficiently distant from each other (which ensures the required
width of the absorption band of the electromagnetic field) and the
upper level from both excited ones is located so close to the top of
both QWs that provides good electron tunneling, the functioning
of QWIP becomes optimal.
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For stable operation of quantum nanostructures, being
the main elements of broadband photodetectors functioning in a
very far infrared range, they should demonstrate peculiar
characteristics: provide high detective properties over the whole
width of the absorption band in the desired range of
electromagnetic field energies at minimum dark current. Due to
the significant mismatch in the size of the unit cells of
anisotropic materials of quantum wells and barriers, it is difficult
to produce stable high-quality photodetectors [1]. Therefore,
intensive research is underway into such isotropic materials,
whose quantum wells and barriers have well-matched unit cell
sizes and, with the optimal geometric design, can meet these
requirements for the successful operation of QWIPs[2].

In the proposed paper, a quantum mechanical calculation
of the electron spectrum and wave functions is performed for a
nanoheterostructure, which consists of two wide quantum wells,
having an inverted internal structure of the potential profile. The
binary QWIP, being a double quantum well with an extremely
weak coupling between both of its wide wells is considered. It is
assumed that the first well (1) contains an inner barrier and the
second well (2) – an inner well with the same physical and
geometric parameters (Fig. 1a, b).

Fig. 1a, b. Potential profiles of the first and second quantum
wells

To simplify the cumbersome analytical expressions, we
assume that the distance between the wide wells is large enough
to consider a structure of two uncoupling wells. At first, let us
obtain the spectrum and wave functions of an electron in a wide
QW with an internal barrier, Fig. 1a. The potential profile Vb(x)
and electron effective mass mb(x) are fixed by the expressions
(1) and (2), respectively:

Solving the Schrödinger equation

it is clear that since the structure is symmetric, the solutions
should be even (s-symmetric) and odd (a-antisymmetric).
Considering the above-barrier region of energies (0≤V0≤Eb≤V),
for the even states, the wave functions are written in a symmetric
form:

while for odd states, the wave functions are written in an
antisymmetric form:

where

These functions are continuous at the interfaces of the structure 
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