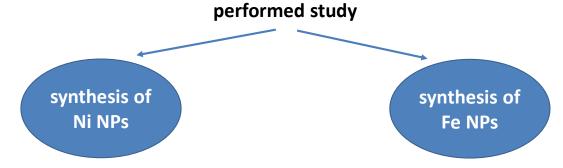
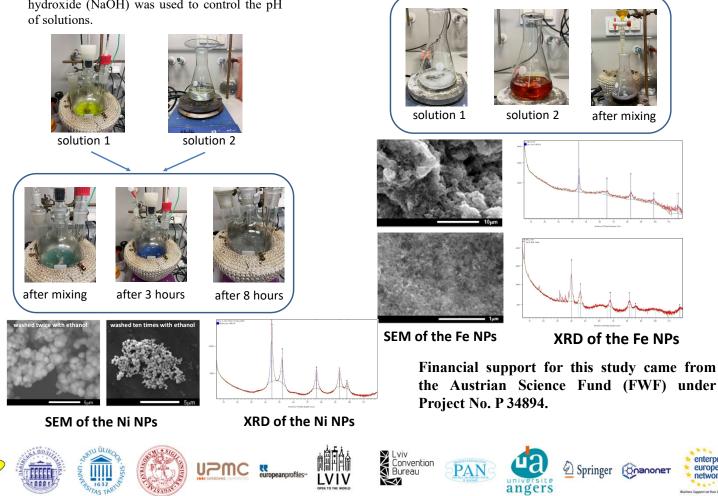


Insights into synthesis of nanosized Ni and Fe particles by chemical reduction method

Wodak I.¹, Yakymovych A.¹, Khatibi G.^{1,2}


¹ Institute of Chemical Technologies and Analytics, TU Wien, Vienna 1060, Austria

²Christian Doppler Laboratory for Lifetime and Reliability of Interfaces in Complex Multi-Material Electronics, TU Wien, Vienna 1060, Austria


E-mail: andriy.yakymovych@tuwien.ac.at

main area of interest

synthesis of the magnetic nanoparticles via the chemical reduction method

Ni nanoparticles (NPs) have been produced via a chemical reduction method employing hydrazine hydrate (N_2H_4 · H_2O) and polyvinylpyrrolidone (PVP) as reducing and surfactant agents, respectively. Nickel chloride (NiCl₂) was dissolved in diethylene glycol (DEG) as the metal precursor. Sodium hydroxide (NaOH) was used to control the pH of solutions. Fe nanoparticles (NPs) have been produced via a chemical reduction method employing sodium boron hydrate (NaBH₄) as a reducing agent. Iron(III) chloride hexahydrate (FeCl₃•6H₂O) was dissolved in ethylene glycol (EG) as the metal precursor.

