Conductivity nanocomposite SiO_xN_y and SiO_xN_yAl_z films

Kizjak A.Yu.¹, Evtukh A.A.¹, Bratus' O.L. ¹, <u>Antonin S.V</u>.¹, Muriy Ya.Yu.²

 V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, 41 Nauki ave., 41, Kyiv, 03028, Ukraine. 2. Taras Shevchenko Kiev National Unaversity, Institute High Technologies, Kiev, Ukraine.
E-mail: antoninsv@gmail.com

1. Motivation

Silicon nanoelectronics.

 Investigation of the structure and electrical conductivity of SiO_xN_y and SiO_xN_yAl_z films.

*SiO_xN_y and SiO_xN_yAl_z films up to 50 nm thick were obtained ion-plasma sputtering method with subsequent high-temperature annealing.

*Technological parameters: initial substrate p-Si. Gas flow parameters: Ar flow rate 50 ml/min, N₂-18 ml/min, O₂-18 ml/min, T=40-120°C, t = 7 min.

 Annealing in nitrogen and argon at T=1100°C for 1 hour.

- Methods of research: -Spectral Elipsometry. -IR Spectrometry,
 - I-V characteristics.

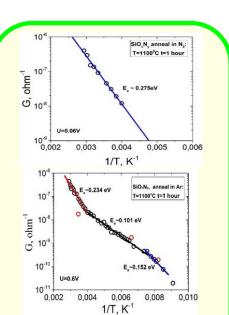


Fig.1. Influence of the annealing medium on the conductivity of the SiO_xN_y film: a) annealing in N2 (up); b) annealing in Ar (down).

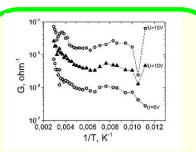


Fig.4. The conductivity of the SiO_xN_y film vs 1/T: a) annealing in N₂(up); b) annealing in Ar (down).

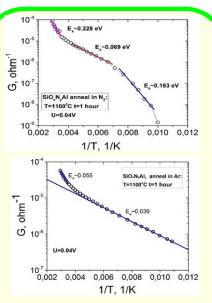


Fig.2. Influence of the annealing medium on the conductivity of the $SiO_xN_yAl_z$ film: a) annealing in N2(up); b) annealing in Ar (down)

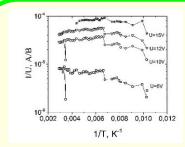


Fig.5. The conductivity of the SiO_xN_y film vs 1/T: a) annealing in N₂(up); b) annealing in Ar (down).

3. Results.

The introduction of metal impurities Al into SiOxNy films leads to an increase in conductivity changing the conductivity mechanism, especially in the region of small fields (<1-2 V) (Fig.3).

The effect of the annealing medium (nitrogen or argon) on the conductivity of SiOxNy and SiOxNyAl_z films differs and depends on the applied voltage (field) and the measurement temperature. Annealing in nitrogen decreases low-temperature conductivity (Fig.1,2) in comparison with annealing in argon.

The annealing significantly influences on conductivity in region of high voltages. The conductivity of SiOxNy film (Fig.4,5) and SiOxNyAl_z (Fig.6) film are quite different.

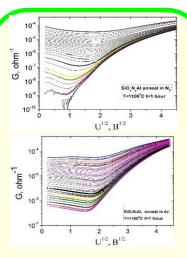
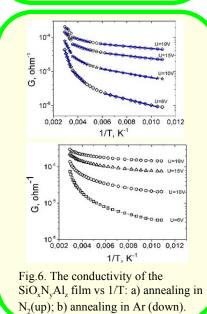



Fig.3. The conductivity of the SiO_x film vs $U^{1/2}$: a) annealing in N_2 (up); b) annealing in Ar (down).

