
Positron spectroscopy of nanoscale regions of 
homogeneous atomic and magnetic orderings in 

strongly correlated alloys 
E. G. Len1,2, T. D. Shatnii1, T. S. Len3, I. Ye. Galstian1, Ye. A. Tsapko1, V. V. Lizunov1 

1G. V. Kurdyumov Institute for Metal Physics  of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine 

 2Kyiv Academic University, NAS and MES of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine 
3National Aviation University, 1 Lyubomyr Huzar Ave., UA-03058 Kyiv, Ukraine 

E-mail: len.evgeniy@gmail.com  

Actuality. Today, the most promising materials of electronic, energy, and aerospace industries are developed not only taking into account quantum effects due to the nanometre 
level of the element base of devices, but also complex collective phenomena in the electrons’ subsystem of solids and other types of lattice perturbations (phonons, magnons, 
etc.). These effects can significantly change the electrical, optical, magnetic and even mechanical properties of the system with relatively small external influences, and therefore 
their presence can be detected by changing many physical characteristics. However, the most of these changes are caused by the modification of the electronic structure, for 
example, due to strong electron-electron correlations. A very limited number of methods allows an experimental observation of these changes in the electronic structure. Such 
methods reproduce the Fermi surface in strong magnetic fields (based on Haas–van Alphen and Shubnikov–de Haas effects) or permit a direct observation of the band structure 
(using angle-resolved photoemission spectroscopy (ARPES)). Both of these methods require the magnetic fields (including very strong ones), low temperatures and, in the case of 
ARPES, ultra-high vacuum, and they are only applicable to systems with a well-defined band structure and Fermi surface. All these experimental complexities and natural 
limitations are absent in the method of positron spectroscopy, namely, in the method of angular correlation of electron positron annihilation radiation (ACAR). 

Models of ACAR. This method involves partial hardware integration of the momentum distribution of electrons by energy and by components of the wave vector, which lies in the 

plane of the slit of the annihilation gamma rays’ detector, which allows to analyse poorly defined (spread) momentum distributions of electrons, including the vicinity of the Fermi 

surface, for example, for nonstoichiometric alloys. The use of spin-polarized positrons additionally allows determining in magnetic materials separately for each of the directions 

of the electrons’ spin the distribution of their by pulses. In addition, this method allows to determine the size and concentration of defects in crystalline or non-crystalline matter 

and to study their electronic properties. Thus, the theoretical consideration of the influence of some many-particle effects on the momentum distributions of conduction 

electrons recorded by the ACAR method (Figs. 1, 2) is actual (note, that contributions of core electrons, positronium and other paths of annihilation are not considered here). 

Results of numerical calculations. Energy is measured in units 
of half-width of the energy zone of a one-component crystal, 
localized magnetic moments are measured in Bohr magneton 
mB. For the absence of a magnetic field, the probabilities of 
finding the projections of localized magnetic moments in the 
selected site (0) are the same: P0

m+=P0
m-=0.5. Equilibrium values 

of magnetic moments (m±) and orders parameters (m, a) are 
found from the condition of free energy minimum. The 
parameters of short-range atomic (a) and magnetic (m) orders 
determine the sizes d of regions of corresponding orderings in 
the investigated strongly correlated alloys. 

Fig. 1. Sketch of the angular correlation spectrometer of annihilation radiation. 

Fig. 2. Part of the 
1st Brillouin zone 
of the b.c.c. alloy 
for coordinates 
{kx, ky, kz}>0 with 
integration layer. 

Conclusions. As shown for substitution binary alloys, the electrons momentum distribution ne(k) is sensitive to many-body effects, including atomic and/or magnetic short-
range orderings and strong electron-electron correlations, which allows to use ACAR for mentioned effects experimental identification. Particularly, it is possible to recover 
from ACAR experimental data, corresponding to a band electrons contribution, the equilibrium values ​​of correlation parameters (a and m), and estimate not only the linear 
size of regions of homogeneous short-range atomic ordering, but the analogous characteristic of nanosize magnetic regions. As determined, the ACAR is more sensitive 
to magnetic ordering than to atomic one. The sensitivity of electrons momentum distributions to magnetic and atomic orderings is decreased with the averaged electron 
concentration increasing, and it is smaller than one for density of electronic states of strongly correlated alloys.  

At the framework of the single-band Hubbard model for 
substitution binary alloys АхВ1-х (in our case x=P0

A=0.5=1-x=P0
B) with 

strong electron correlations, the changes in momentum 
distributions of electrons are investigated depending on the 
presence and magnitude of pair correlations in the arrangement of 
atoms of different types and/or in the orientation of electron 
magnetic moments at nearest sites. These correlations determine 
electrons ground state, their kinetic and thermodynamic properties. 
As shown, at temperature of 0 K and in crude estimation k≈Pz, the 
effects of pair correlations on the electrons momentum 
distributions (ne(k), Fig. 4) are clearly observed. However, they are 
smaller than ones on density of electronic states (g(E), Fig. 3). The 
Figs. represent the effects of non-equilibrium atomic and magnetic 
short-range orders and their simultaneously act on mentioned 
electrons energy and momentum distributions in comparison with 
fully disordered alloys (black lines). The magnetic separation and 
order (m=±0.25, i.e. ferromagnetic (FM)/antiferromagnetic 
(AFM) states) have more influence on these electrons distributions 
due to strong electron-electron correlations than corresponding 
ordering in atomic subsystem. With the averaged electron 
concentration n increasing, the effect of magnetic and atomic 
orderings on electrons momentum distributions ne(k) is decreased. 

Fig. 4. Dependences of 
ne(k) (~Ibe(q) (ACAR)) from 
modulus of electron wave 
vector k for b.c.c. alloys 
with different atomic and 
magnetic short-range 
orderings and two values of 
electron concentration n. 

Fig. 3. Densities of 
electronic states for b.c.c. 
alloys with different atomic 
and magnetic short-range 
orderings and two values of 
electron concentration n. 
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Itheor(q) is the intensity 
register by ACAR, q is the 
difference between the 
scattering angle of the 
annihilation g-quanta and 
2p, IP, IG

j
  are the amplitude 

coefficients of the parabolic 
and Gaussian parts of the 
spectra, respectively, sj are 
the dispersions, qF is the 
angle corresponding to the 
Fermi momentum, AB is the 
renormalized Boltzmann 
constant, and T is the 
temperature of the sample. 
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