

Mechano-chemical modification of β-Ga₂O₃ and β-Ga₂O₃:Eu micropowders by plasmonic nanoparticles

M. Kushlyk¹, D. Slobodzian¹, A. Luchechko¹, Ya. Shpotiuk^{1,2}, M. Baláž³

Ivan Franko National University of Lviv, 79017, 107 Tarnavskoho Str., Ukraine ²Institute of Physics, University of Rzeszów, I, Pigonia str., 35-959 Rzeszów, Poland ³Institute of Geotechnics SAS, Watsonova 45, 04001 Košice, Slovakia

λ_{Em} = slit: 5

velenath (nm)

G-A

G-A-

G-A-4

G-A-

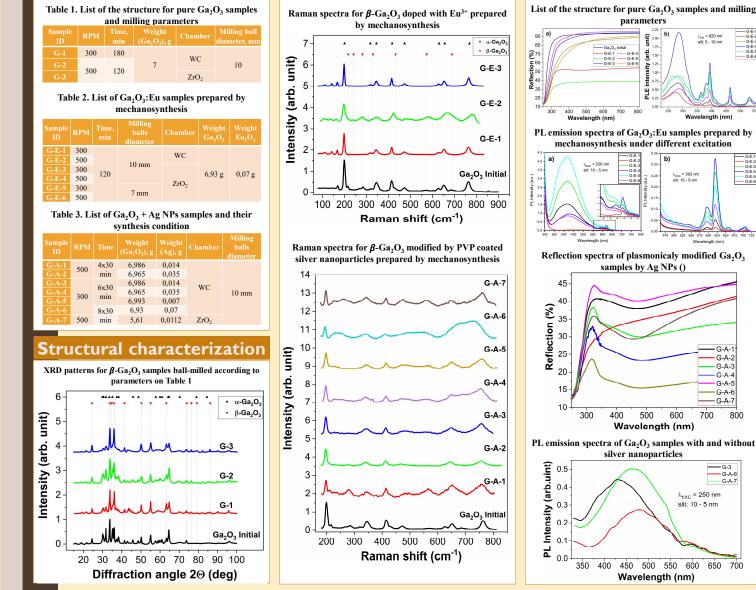
G-A-6

G-A-7

800

- G-3 - G-A-6 - G-A-7

650 700


700

Abstract

In recent years, increasing interest has been given to the synthesis of metal-oxide-semiconductors, such as monoclinic gallium oxide (β-Ga₂O₃). Especially, β-Ga₂O₃ semiconductor nanomaterials are attractive candidates as active elements for advanced nanoscale devices due to their unique electronic and optical properties, low effective density, high specific surface area, and shell permeability that are important in many technological applications such as photonics, sensors, solar energy conversion, and electrochemical energy storage, etc. On the other hand, much attention has been paid to the plasmonic effect of metal nanoparticles (NPs) formed in close vicinity to the recombination centres. Combining a thin conversion layer with silver plasmonic nanostructures leads to increased donor absorption and emission efficiency.

Methodology

Structural characterization **Optical characterization**

Conclusions

The results show that the properties of obtained β -Ga₂O₃ composites were strongly influenced by the chamber material and rotation speed. Thus, different crystalline sizes (from 5 um to 300 nm) were obtained, where the bigger particle size show's the greater bulk emission. In the case of β -Ga₂O₃ powder doped with Eu, an opposite result was obtained. Also, it needs to note, that higher luminescence intensity was obtained for the pure composite prepared in the ZrO₂ chamber. It is partially caused by the presence of tungstate and carbon atoms in Ga_2O_3 powders as well as the low content of α -Ga₂O₃ phase.

It is determined that modification with Ag NPs requires increasing the mechanosynthesis time up to 4 h at a low rotation speed (~300 rpm). The absorption spectra show the existence of two modes of plasmon resonance for silver nanoparticles in the β -Ga₂O₃ matrix with relatively high intensity. One of them is a quadrupole mode (with λ_{max} near 360-370 nm) and another one is a dipole mode whose maximum is in the range from 450 to 480 nm. It leads to a redshift of the PL band for plasmonically modified Ga₂O₃ powders in the direction of the plasmon resonance maximum, with approximately 20% of intensity enhancement.

Acknowledgements:

The work was supported by the International Visegrad Fund (scholarship ID: 52110920) and by the Ukrainian Ministry of Education and Science (project No. 0120U101332).

Contact information:

Dr. Markiyan Kushlyk, Email: markiyan.kushlyk@lnu.edu.ua, kushlykmarik@gmail.com

References

- 1. V. Vasyltsiv, A. Luchechko, et al Luminescence and Conductivity of β -Ga₂O₃ and β -Ga₂O₃:Mg Single Crystals // Acta physica polonica A. 2022. Vol. 141, Ne4. P. 312 318. 2. A. Luchechko, V. Vasyltsiv, et al Luminescence spectroscopy of Cr³⁺ ions in bulk single crystalline β -Ga₂O₃// J. Phys. D: Appl. Phys. 2020. Vol. 53, Ne35. P. 354001 2.
- Priys. 2020. Vol. 53, ne35. R. 354001
 Skushlyk M., Tsiumar V, Zhydachevskyy Y, et al Enhancement of the YAG:Ce,Yb down-conversion emission by plasmon resonance in Ag nanoparticles. // J Alloys Compd. 2019. 804:202. P212.
 Kushlyk, M., Tsiumar V, Zhydachevskyy Y. et al. Preparation and properties of Ag plasmonic structures on garnet substrates. // Applied Nanoscience. 2022. Vol. 12, №3. P. 317 334