APPLICATION OF TITANIA IMMOBILIZED ON GRANULAR ACTIVATED CARBON FOR ADSORPTION/DECOMPOSITION **OF ORGANIC HALOGENS**

Halyna Yankovych*1, Michael Elsässer2, Nicola Hüsing2, Miroslava Václavíková1

¹Institute of Geotechnics Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia.

*e-mail: <u>yankovych@saske.sk</u>

²Department of Materials Science and Physics, University of Salzburg, Austria

ABSTRACT

Adsorbable organohalogens (AOX) are persistent organic pollutants frequently found in water, which pose serious environmental and health issues. Their degradation and/or removal become an important challenge. Among the existing technologies, photodegradation using semiconductor catalysts is a promising alternative method [1]. To overcome the typical weak adsorption capacity of photocatalyst, photocatalyst/adsorbent composites based on high surface area activated carbons and TiO₂ can be used [2]. The present study is dedicated to the facile *in situ* sol-gel synthesis of composite material based on TiO₂ and granular activated carbon. The synthesized composite was examined by SEM-EDX, BET, TG-DTG and XRD techniques. TiO₂-GAC has the high surface area $(907m^2/g)$ combined with relatively high content of crystalline phase (21.9%). These benefits allow its application for adsorption/degradation of AOX. The prepared material possesses high adsorption capacity towards 4-chlorophenol, 4-bromophenol and 4-iodophenol. The photodegradation tests revealed the excellent tendency of AOX removal. However, the decomposition pathway is not clear and requires further studies.

METHODS

I - stirring for 30 min

RESULTS

Adsorption and photodegradation of target contaminants by bare titania and titania *immobilized on activated carbon support*

Adsorption capacity of granular activated carbon

Photodegradation of 4-chlorophenol by TiO₂

SEM micrographs of synthesized materials

(GAC), TiO_2 and TiO_2 -GAC composite towards 4-HPhs (4-CP – 4-chlorophenol, 4-BP - 4-bromophenol, 4-IP – 4-iodophenol)

 $(C_{TiO2} = 1 g \cdot L^{-1}, actual pH of 4-CP solution$ with concentration of 22.4 $mg \cdot L^{-1}$)

CONCLUSIONS

The present study deals with the facile in situ sol-gel synthesis of composite material based on TiO₂ and granular activated carbon. The synthesized composite was examined by SEM-EDX, BET, TG-DTG and XRD techniques. TiO₂-GAC has the high surface area ($907m^2/g$) combined with relatively high content of crystalline phase (21.9%). These benefits allow its application for adsorption/degradation of AOX. The prepared material possesses high adsorption capacity towards 4-chlorophenol, 4-bromophenol and 4-iodophenol. The photodegradation tests revealed the excellent tendency of AOX removal. However, the decomposition pathway is not clear and requires further studies.

Acknowledgment: The research has been supported by the VEGA 2/0156/19 MŠVVaŠ SR, H2020-MSCA-RISE-2016-NANOMED No 734641 as well as by Ernst Mach Grant. **References:**

- 1. Abedi K. et al. Decomposition of chlorinated volatile organic compounds (CVOCs) using NTP coupled with TiO₂/GAC, ZnO/GAC, and TiO₂–ZnO/GAC in a plasma-assisted catalysis system // Journal
- 2. of Elect.- 2015.- 73.-P. 80-88.
- 2. Moral-Rodríguez A. et al. Tailoring the textural properties of an activated carbon for enhancing its adsorption capacity towards diclofenac from aqueous solution // Environ. Sci. Poll. Res. -2019.- 1.

