Magnetocaloric effect in nanoparticles of non-stoichiometric manganite

Obtaining single-phase self-doped non-stoichiometric	Wei Zivu ¹ , Liedienov N.A. ^{1, 2} , Pashchenko A.V. ^{1, 2,3} , Ouaniun Li ¹
nanopowder manganites is of a particular interest because of	
their diverse magnetic state transitions and potential practical	¹ State Key Laboratory of Superhard Materials, International Center of Future Science, Jilin
applications as magnetic refrigerants and in medicine for	University. Qianjin Street, 2699, Changchun-130012, China. E-mail:
treating cancer [1-4] The determination of the crystal	nikita.ledenev.ssp@gmail.com
structure morphology and magnetic properties of different	² Donetsk Institute for Physics and Engineering named after O.O. Galkin, NAS of Ukraine.
structure, morphology and magnetic properties of different	Prospect Nauki, 46, Kyiv-03028, Ukraine.
stoichiometric samples is very important for the analysis of	³ Institute of Magnetism, NAS of Ukraine and MES of Ukraine. Vernadsky Blvd., 36, Kyiv-03142,
the functional properties of manganites.	Ukraine.

Methods of Investigation

- X-ray diffraction (XRD) method using Shimadzu LabX XRD-6000 diffractometer in $Cu_{K\alpha 1}$ -radiation at room temperature
- Transition electron microscopy (TEM) method using JEM-2200FS Transmission Electron Microscope
- Magnetic method using a Quantum Design SQUID MPMS 3 magnetometer

Results and Discussion

Fig. 1. X-ray patterns and morphology for the $La_{0.8-x}K_{0.2}Mn_{1+x}O_3$ nanopowders.

According to XRD and TEM data, it has been found that the synthesized non-stoichiometric manganites consist of quasi-spherical nanoparticles around 40 nm. The main crystalline phase of all samples is rhombohedral R3c perovskite structure. With further increase in concentration at x > 0.10, the compositions become non-single phase with negligible amount of Mn₃O₄ impurity.

291K

Fig. 2. Temperature (a) and magnetic field (b) dependences of magnetization for the $La_{0.8-x}K_{0.2}Mn_{1+x}O_3$ nanopowders. The inserts of (b) show an enlarged area of hysteresis loops at T = 2 and 300 K to determine coercivity $H_{\rm C}$ and residual magnetization $M_{\rm R}$.

Fig. 3. Isotherms of magnetization within T = 291-371 K (a), as well as temperature and field 3D-dependence of the magnetic entropy change up to $\mu_0 H = 3$ T (b) for the selected $La_{0.75}K_{0.2}Mn_{1.05}O_3$ nanocrystalline sample.

The magnetic properties and magnetocaloric effect of these compounds were studied as a function of manganese doping level. Magnetic measurements show that the synthesized manganites change from ferromagnetic state to paramagnetic state with the increase of temperature around $T_{\rm C} = 330$ K and exhibite the characteristics of typical magnetic nanopowder. The composition with the highest entropy change $\Delta S_{M}^{max} = -3.629 \text{ J} / (\text{kg} \cdot \text{K})$ under 3 T at $T_{C} = 332 \text{ K}$ is the $\text{La}_{0.8-x} \text{K}_{0.2} \text{Mn}_{1+x} \text{O}_3$ with x = 0.05.

Conclusions

• All samples are crystalized in a rhombohedral R3c type of symmetry, the single-phase perovskite structure of which are preserved up to concentration x = 0.10.

• An average size of spherical-like particles changes slightly depending on x and is around 40 nm based on the XRD and TEM data. • It has been established that excess manganese doping and appearance of cation vacancies in A-positions can significantly improve the ferromagnetic nature and magnetocaloric effect, whereas the magnetic phase transition temperature changes slightly depending on the concentration x.

non-stoichiometric $La_{0.75}K_{0.2}Mn_{1.05}$ nanocrystalline sample shows • The highest magnetic the change entropy $\Delta S_{\rm M}^{\rm max} = -3.629 \, \text{J} / (\text{kg} \cdot \text{K})$ under magnetic field 3 T at $T_{\rm C} = 332 \, \text{K}$.

References

1. Arun B., Akshay V. R., Vasundhara M. Observation of enhanced magnetocaloric properties with A-site deficiency in La_{0.67}Sr_{0.33}MnO₃// Dalton Trans.-2018.-47.-P.15512.

2. Phan M. -H., Yu S. -C. Review of the magnetocaloric effect in manganite materials // J Magn Magn Mater.-2007.-308.-P. 325-340.

3. Wei Ziyu, Pashchenko A.V., Liedienov, N.A. et al. Multifunctionality of lanthanum-strontium manganite nanopowder// Phys. Chem. Chem. Phys.-2022.-**22.**-P.11817-11828.

4. Andrade V.M., Vivas R.J.C., et al. Magnetic and magnetocaloric properties of La_{0.6}Ca_{0.4}MnO₃ tunable by particle size and dimensionality // Acta Mater. -2016.-102-P.49-55.