

Cubic nonlinear optical phenomena in copper oxides thin films

V. Rudenko¹, S. Mulenko², N.Stefan³, V. Liakhovetskyi¹, O. Tverdokhlibova¹, A. Brodin⁴, M. Brodyn¹ ¹ Institute of Physics NAS of Ukraine, 46 Nauky Blvd, Kiev-28, Ukraine

E-mail: val@iop.kiev.ua

² G. V. Kurdyumov Institute for Metal Physics NAS of Ukraine, 36 Academician Vernadsky Blvd., Kiev 142, Ukraine ³National Institute for Lasers, Plasma and Radiation Physics, PO Box MG-54, RO-77125, Magurele, Romania ⁴National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37 Peremohy av., Kyiv, 03056, Ukraine

Fig.1. SEM images of nano-scale copper oxide films deposited by RPLD on SiO₂ substrates: at P(O₂) = 1.0Pa, T₅ = 293K (a), P(O₂) = 3.0Pa, T₅ = 293K (b), P(O₂) = 5.0Pa, T₅ = 293K (c) and P(O₂) = 1.0Pa, T₅ = 800K (d), P(O₂) = 3.0Pa, T₅ = 800K (e), P(O₂) = 5.0Pa, T₅ = 800K (f)

Fig.2. The linear optical absorption properties of nano-scale copper oxide films deposited, by RPLD on SiQ₅ substrates: at $P(O_2) = 1.0Pa$, $T_s = 293K$ (1) and $T_s = 800K$ (2); $P(O_2) = 3.0Pa$, $T_s = 293K$ (3) and $T_s = 800K$ (4); $P(O_2) = 5.0Pa$, $T_s = 293K$ (5) and $T_s = 800K$ (6)

Publications of different authors to have been carried out last years demonstrated that low-dimensional structures of transition metal oxides in the form of thin films and nanoparticles such as V₂O₃, Cr₂O₃, NiO₃, Fe₂O₃, PdO and so on are advanced non-linear optical materials owing to high values of their high third-order optical susceptibility ($\chi^{(3)}$) and fast responses time. Attractive attention of investigators was focused on the same structures, i.e. Cu₂O, CuO.

The results of the studies indicate that the nonlinearity parameters of various copper oxide nanostructures naturally depend on the characteristics of laser radiation (wavelength λ , pulse duration τ_p), on the type of structure, since depending on these factors the contribution of some or other mechanisms of nonlinearity changes. For thin-film structures, their cubic nonlinear optical characteristics depend on their sputtering technology, since their structure, phase composition, presence of certain impurities and the like may change. Therefore, the search for sputtering conditions providing improvement of optical nonlinearity parameters remains actual.

Here, we report about investigations of thin copper oxide (Cu₂O) films, utilizing Zscan technique with nanosecond laser excitation (9 ns and 15 ns at the wavelengths of λ =532 nm and λ =1064 nm, accordingly)

Sample	ا _م , [MW/cm²]	ΔT	n ₂ , [cm²/W]	β, [cm/W]	Reχ ⁽³⁾ , [esu]	Imχ ⁽³⁾ , [esu]	ا _د ہ W/cm²
293K, 1Pa	2.64	-0.183	-3.22×10 ⁻⁷	5.5×10 ⁻²	-4.1×10 ⁻⁵	3.95×10 ⁻⁵	-
293K, 3Pa	2.33	-0.174	-5.16×10 ^{.7}	3.4×10 ⁻²	-6.58×10 ⁻⁵	2.44×10 ⁻⁵	
293K, 5Pa	4.32	0.074	1.25×10 ⁻⁷	-	1.59×10 ⁻⁵	-	1.45×107
800K, 1Pa	2.39	-0.108	-3.34×10 ^{.7}	25×10 ⁻²	-4.26×10 ⁻⁵	1.65×10-4	-
800K, 3Pa	3.78	0.11	1.86×10 ⁻⁷	1.05×10 ⁻²	2.37×10 ⁻⁵	7.55×10 ⁻⁶	-
800K, 5Pa	4.52	0.056	1.01×10 ⁻⁷	5.4×10 ⁻²	1.29×10 ⁻⁵	3.88×10 ⁻⁵	5.6×10 ⁶

Conclusions

Received maximum high values of nonlinear refractive coefficient $n_2=13.5 \times 10^{-7} \text{cm}^2/W$ for $\lambda=1064$ nm and $n_2=-6.5 \times 10^{-7} \text{cm}^2/W$ for $\lambda=532$ nm might be useful for the advanced optimization of photoelectrical equipment. Nonlinear optical absorption to have been investigated, demonstrated SA or RSA advanced mechanism depending from sample that shows of perceptiveness of such films application for nonlinear photon purpose such as widerange optical trigger which is being used as optical limiter for optical detector security.

