Relaxation in jammed monolayers of elongated particles

Tatochenko M.O. ${ }^{1}$, Bulavin L.A. ${ }^{2}$, Kovalchuk V.I. ${ }^{2}$, Lebovka, N.I. ${ }^{1}$, Vygornitskii N.V. ${ }^{1}$

${ }^{1}$ Department of Physical Chemistry of Disperse Minerals, F. D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, Kyiv 03142, Ukraine.
${ }^{2}$ Department of Physics, Taras Shevchenko Kiev National University, Kyiv 01033, Ukraine.
The relaxation in systems of elongated particles (discorectangles) adsorbed on a plane was studied numerically. The initial jamming state was formed using the random sequential adsorption (RSA) model. The off-lattice model was used. The aspect ratio of particles (length-to-width ratio) was varied within the range $\varepsilon=1 \div 13$. After formation of jamming state it was relaxed via translational and rotational Brownian motions.

Dense stacks (fillèd with almost parallel particles)
Figure 1: Patterns in a jamming state and after complete relaxation for particles with aspect ratio $\varepsilon=4$ and $\varepsilon=12$.

Figure 2: Order parameter, S, versus the time, $t_{\text {MC }}$, during the relaxation for particles with aspect ratio $\varepsilon=4$ and $\varepsilon=12$.

Figure 3: Local order parameter, S_{l}, versus the reduced distance r / ε for different values of $t_{M C}$.

Figure 4: Reduced distance, r_{m} / ε, versus the time, $t_{M C}$, for different values of aspect ratio, ε.

Conclusions

For systems with relatively small aspect ratios $(\varepsilon \leq 9)$ the relaxation into the isotropic state with $S=0$ was always observed. In the intermediate range, $9<\varepsilon \leq 12$, the relaxation into the isotropic or nematic phase was observed. In systems with higher aspect ratio ($\varepsilon>12$), the relaxation into the nematic phase was always observed. The transition to the nematic phase occurs due to the enlargement and consolidation of stacks of particles.

Acknowledgements: The authors acknowledge funding from the National research foundation of Ukraine, Grant No. 2020.02/0138 (M.O.T., N.V.V.), and National Academy of Sciences of Ukraine, Project Nos. 7/9/3-f-4-1230-2021 (N.I.L.)

