## **Relaxation in jammed monolayers** of elongated particles



## <u>Tatochenko M.O.<sup>1</sup></u>, Bulavin L.A.<sup>2</sup>, Kovalchuk V.I.<sup>2</sup>, Lebovka, N.I.<sup>1</sup>, Vygornitskii N.V.<sup>1</sup>

<sup>1</sup>Department of Physical Chemistry of Disperse Minerals, F. D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, Kyiv 03142, Ukraine.

<sup>2</sup>Department of Physics, Taras Shevchenko Kiev National University, Kyiv 01033, Ukraine.

The relaxation in systems of elongated particles (discorectangles) adsorbed on a plane was studied numerically. The initial jamming state was formed using the random sequential adsorption (RSA) model. The off-lattice model was used. The aspect ratio of particles (length-to-width ratio) was varied within the range  $\varepsilon = 1 \div 13$ . After formation of jamming state it was relaxed via translational and rotational Brownian motions.



Figure 1: Patterns in a jamming state and after complete relaxation for particles with aspect ratio  $\varepsilon$ =4 and  $\varepsilon$ =12.

Figure 3: Local order parameter,  $S_l$ , versus the reduced distance r/ $\varepsilon$  for different values of  $t_{MC}$ .



10<sup>2</sup> Time,  $t_{MC}$  (MC step) Time,  $t_{MC}$  (MC step)

Figure 2: Order parameter, S, versus the time,  $t_{MC}$ , during Figure 4: Reduced distance,  $r_m/\varepsilon$ , versus the time,  $t_{MC}$ , for the relaxation for particles with aspect ratio  $\varepsilon = 4$  and  $\varepsilon = 12$ . different values of aspect ratio,  $\varepsilon$ .

## Conclusions

For systems with relatively small aspect ratios ( $\varepsilon \leq 9$ ) the relaxation into the isotropic state with S=0 was always observed. In the intermediate range,  $9 < \varepsilon \le 12$ , the relaxation into the isotropic or nematic phase was observed. In systems with higher aspect ratio ( $\varepsilon$ >12), the relaxation into the nematic phase was always observed. The transition to the nematic phase occurs due to the enlargement and consolidation of stacks of particles.

**Acknowledgements:** The authors <u>acknowledge</u> funding from the National research foundation of Ukraine, Grant No. 2020.02/0138 (M.O.T., N.V.V.), and National Academy of Sciences of Ukraine, Project Nos. 7/9/3-f-4-1230-2021 (N.I.L.)

