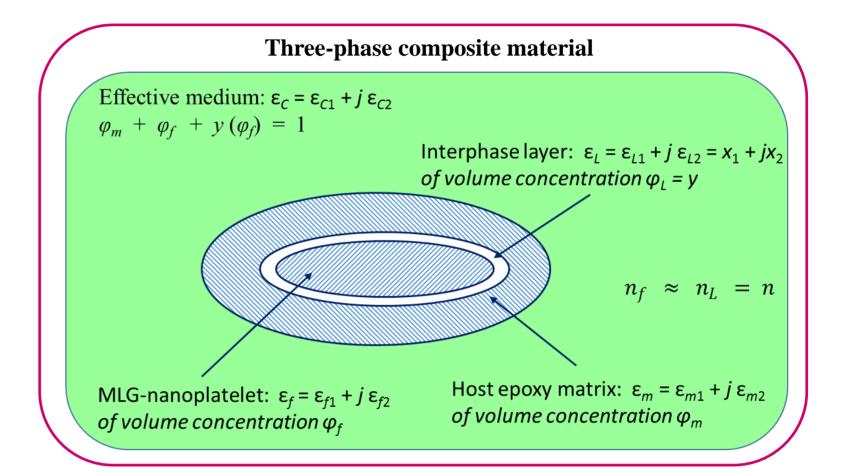
The dielectric spectroscopy of epoxy composites with unoxidized graphene nanoplates

<u>Alla Gorb¹</u>, Borys Gorelov², Oleksiy Polovina¹, Sergey Shulga², Adam Ingram³, Sylwester Wacke³

¹ Faculty of Physics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine ² Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

³ Department of Physics, Opole University of Technology, Opole, Poland


Abstract

The broad-band dielectric spectroscopy has been used as a tool to study molecular structure of epoxy nanocomposites filled with non-oxidized multilayered graphene nanoplates. Parameters of interphase area have been estimated by using the Steeman-Maurer model for a three-phase dielectric material

The calculation scheme

The complex dielectric permittivity ε_c of a three-phase composite material is given by the Steeman-Maurer relation [1]

 $(n, \omega, \varphi_{L}, \varphi_{L}) = \frac{\varphi_{f} \cdot \varepsilon_{f}(\omega) + \varphi_{L} \cdot R(n, \omega) \cdot \varepsilon_{L}(\omega) + (1 - \varphi_{f} - \varphi_{L}) \cdot S(\varphi_{f}, n, \omega) \cdot \varepsilon_{m}(\omega)}{S(\varphi_{f}, n, \omega) \cdot \varepsilon_{m}(\omega)}$

$$\varepsilon_{C}(n,\omega,\varphi_{f},\varphi_{L}) = \frac{\varphi_{f} + \varphi_{L} \cdot R(n,\omega) + (1 - \varphi_{f} - \varphi_{L}) \cdot S(\varphi_{f},n,\omega)}{\varphi_{f} + \varphi_{L} \cdot R(n,\omega) + (1 - \varphi_{f} - \varphi_{L}) \cdot S(\varphi_{f},n,\omega)}$$

$$R(n,\omega) = \frac{(1-n)\cdot\varepsilon_{L}(\omega) + n\cdot\varepsilon_{f}(\omega)}{\varepsilon_{L}(\omega)}$$

$$S(n,\omega,\varphi_{f},\varphi_{L}) = \frac{[n\cdot\varepsilon_{L}(\omega) + (1-n)\cdot\varepsilon_{m}(\omega)]\cdot[n\cdot\varepsilon_{f}(\omega) + (1-n)\cdot\varepsilon_{L}(\omega)]}{\varepsilon_{L}(\omega)\cdot\varepsilon_{m}(\omega)} + \frac{n\cdot(1-n)\cdot\varphi_{f}\cdot[\varepsilon_{L}(\omega) - \varepsilon_{m}(\omega)]\cdot[\varepsilon_{f}(\omega) - \varepsilon_{L}(\omega)]}{(\varphi_{f} + \varphi_{L})\cdot\varepsilon_{L}(\omega)\cdot\varepsilon_{m}(\omega)}$$

 φ_f , φ_L – are volume concentrations for the filler and interphase area, respectively; $\varepsilon_{c}, \varepsilon_{m}, \varepsilon_{f}, \varepsilon_{L}$ – are complex dielectric permittivity for the polymer—based composite material, the host polymer matrix, the filler, and the interphase area, respectively;

n is the depolarization factor [2] of the filler particle in the direction of an applied electric field of the circular frequency ω .

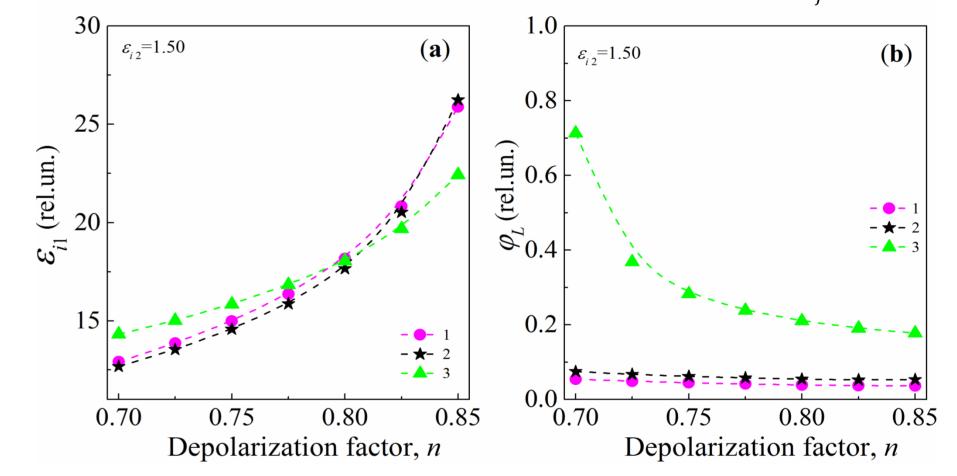
For the case of
$$n = 0$$
 we have $R(0, \omega) = S(0, \omega, \varphi_f, \varphi_L) = 1$ and
 $\varepsilon_C(0, \omega, \varphi_f, \varphi_L) = \varphi_f \cdot \varepsilon_f(\omega) + \varphi_L \cdot \varepsilon_L(\omega) + (1 - \varphi_f - \varphi_L) \cdot \varepsilon_m(\omega)$

For the case of n = 1 we have

$$R(1,\omega) = \varepsilon_f(\omega)/\varepsilon_L(\omega), \qquad \varepsilon_C(0,\omega,\varphi_f,\varphi_L) = \frac{1}{\frac{\varphi_f}{\varepsilon_f(\omega)} + \frac{\varphi_L}{\varepsilon_L(\omega)} + \frac{1-\varphi_f-\varphi_L}{\varepsilon_m(\omega)}}$$

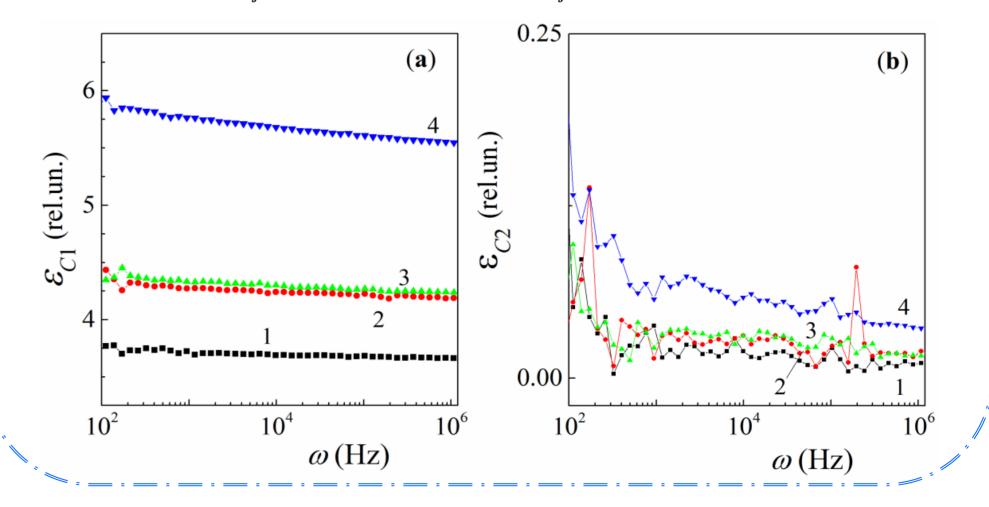
Using the Steeman-Maurer relation and measured values of the dielectric permittivity $\varepsilon_{C1,m}(\omega, \varphi_f)$ and the dielectric loss factor $\varepsilon_{C2,m}(\omega, \varphi_f)$ of the composites, both the interphase layer's dielectric permittivity $\varepsilon_{L1}(n, \omega, \varphi_f, \varepsilon_{L2})$ and volume portion $\varphi_L(n, \omega, \varphi_f, \varepsilon_{L2})$ can be estimated by solving the set of equations

$$Re[\varepsilon_{C}(n,\omega,\varphi_{f},\varphi_{L},\varepsilon_{L2})] = \varepsilon_{C1,m}(\omega,\varphi_{f})$$


$$Im[\varepsilon_{C}(n,\omega,\varphi_{f},\varphi_{L},\varepsilon_{L2})] = \varepsilon_{C2,m}(\omega,\varphi_{f})$$

provided that n and ε_{L2} are prescribed as independent parameters.

Frequency-averaged dependences $\varepsilon_{L1}(n, \varphi_f, \varepsilon_{L2})$ and $\varphi_L(n, \varphi_f, \varepsilon_{L2})$ are plotted on the figures.


Estimation of the relative dielectric permittivity ε_{i1} (a) and the volume fraction φ_L (b) of the interphase layers versus the depolarization factor *n* for the MLG-filled epoxy nanocomposites at different loadings: $\varphi_f = 0.0053$ (the curves "1"), $\varphi_f = 0.0107$ (the curves "2"), $\varphi_f = 0.0271$ (the curves "3")

 $\varepsilon_f = 15.0 + 0.2*j$

The values depicted on the dependences $\varepsilon_{i2}(n)$ and $\varphi_i(n)$ are arithmetic-averaged for the frequency set $\omega/2\pi = [121.52$ Hz, 1026.3Hz, 10729Hz, 112160Hz, 1172500Hz]

Frequency dependences of relative dielectric permittivity ε_{C1} (a) and dielectric loss factor ε_{C2} (b) for the neat epoxy (the curves "1") and its composites with MLG-nanoplates measured at 95 K for different volume loadings: $\varphi_f = 0.0053$ (the curves "2"), $\varphi_f = 0.0107$ (the curves "3"), $\varphi_f = 0.0271$ (the curves "4")

Conclusions

Variations in composite's dielectric permittivity with increasing the MLG-loading (φ_f) are nonmonotonous and can be explained by epoxy's molecular structure alteration in the interphase area. An increasing of both the interphase's permittivity and the volume fraction with increasing φ_f evidences that the structure alteration is accompanied with breeding the dipole molecular fragments of the epoxy macromolecular chains.

Contact information

Borys Gorelov Composite Materials Department, Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine, Kyiv E-mail: bgorel@ukr.net

Alla Gorb Faculty of Physics, Taras Shevchenko National University of Kyiv, Kyiv E-mail:g_alla@univ.kiev.ua

References

- [1]. P.A.M. Steeman, F.H.J. Maurer. An interlayer model for the complex dielectric constant of composites: an extension to ellipsoidally shaped particles. Colloid Polym. Sci. 270 (1992) 1069-1079.
- [2]. L.D. Landau, E.M. Lifshitz. Electrodynamics of Continuous Media (vol.8 of Course of Theoretical Physics) §4, Pergamon Press, 1963, 417 p. [3]. X. Xia, Y. Wang, Zh. Zhong, G.J. Weng. A frequency-dependent theory of electrical conductivity and dielectric permittivity for graphenepolymer nanocomposites. Carbon. 111 (2016) 221-230.

