

Dispersion and Thin Spin-Depended Splittings of Electronic π-Bands in Transition Metal Dichalcogenide Crystals and Monolayers

Viktor Gubanov and <u>Antonina Naumenko</u> E-mail: vagubanov46@gmail.com, <u>a naumenko@univ.kiev.ua</u> Faculty of Physics, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrs'ka str., 01601, Kyiv, Ukraine

The dispersion of the electronic states of transition metal dichalcogenides crystals 2H-MeX₂ a (Me=Mo, W; X=S,Se,Te) s well as their monolayers has been investigated by using the symmetric theoretical group methods. It is shown that the results of the developed methods of theoretical-group analysis are consistent with the data of experimental and computational studies of energy spectra and multiplicities of degeneration of quantum states of pi-electron zones.

Figure 1. Structure of standard unit cell of hexagonal crystalline 2H-MeX₂ (a); t he standard diagramme of the spatial symmetry group P63 /mmc (D_{6h}^{4}) (b); orientation of the elements of the point symmetry group 6/mmm (D_{6h}) (c). The circles indicate the positions of the atoms of metal (dark) and halogen (transparent).

Figure 4. Dispersion of the electron energy π -bands in the 2H-MeX₂ crystal (a) and a single-layer (letters mark the points in the Brillouin zone, and indexed letters do the irreducible projective representations of the corresponding projective classes)

Figure 2. Brillouin zone of 2H-MeX₂ crystals and its symmetry points

Figure 3. Structure of the standard unit cell of single-layer of 2H-MeX₂ (a); the diagram of the spatial symmetry group DG78 (b).

Figure 5 Dispersion of electronic energy π - and π *-bands in the Brillouin zone of hexagonal crystals of 2H_MeX₂ along the line K - P - H: without taking (*a*) and taking the electron spin into account (*b*)

Table 1 Irreducible projective representations of the Kpoint of the MeX_2 monolayer

$$(C_{3h}) | e c_3 c_3^2 ic_2 ic_6^5 ic_6$$

Table 2 Irreducible projective representations of the K point of the MeX₂(taking into account spine of electrone)

$$\bar{6} (C_{3h}) \mid e \quad c_3 \quad c_3^2 \quad ic_2 \quad ic_6^5 \quad ic_6$$

Table 3 Representation of electronic π -zones of the MeX₂ monolayer

$\overline{6}$ (C_{3h})	e	c_3	c_3^2	ic_2	ic_6^5	ic_6
K_{eq}	2	-1	-1	2	-1	-1
K_{z}	1	1	1	-1	-1	-1
K_{π}	2	-1	-1	-2	1	1
$K_{\mathbf{r}}$	3	0	0	1	-2	-2
K_{vib}	6	0	0	2	2	2
$D_{1/2}^{+}$	2	1	-1	0	$-\sqrt{3}$	$\sqrt{3}$
K'_{z}	2	1	-1	0	$\sqrt{3}$ -	$-\sqrt{3}$
K'_{π}	4	-1	1	0	$-\sqrt{3}$	$\sqrt{3}$

$K_1^{(\circ)}$	1	1	1	1	1	1	
$K_{2}^{(0)}$	1	1	1	-1	-1	-1	
$K_{3}^{(0)}$	1	ϵ_3	ϵ_3^{-1}	1	ϵ_3	ϵ_3^{-1}	
$K_{4}^{(0)}$	1	ϵ_3	ϵ_3^{-1}	-1	$-\epsilon_3$	$-\epsilon_3^{-1}$	
$K_{5}^{(0)}$	1	ϵ_3^{-1}	ϵ_3	1	ϵ_3^{-1}	ϵ_3	
$K_{6}^{(0)}$	1	ϵ_3^{-1}	ϵ_3	-1	$-\epsilon_3^{-1}$	$-\epsilon_3$	

$(K')_1^{(0)}$	1	-1	1	i	-i	-i
$(K')_{2}^{(0)}$	1	-1	1	-i	i	i
$(K')_{3}^{(0)}$	1	$-\epsilon_3$	ϵ_3^{-1}	i	ϵ_{12}	$-\epsilon_{12}^{-1}$
$(K')_4^{(0)}$	1	$-\epsilon_3$	ϵ_3^{-1}	-i	$-\epsilon_{12}$	ϵ_{12}^{-1}
$(K')_{5}^{(0)}$	1	$-\epsilon_3^{-1}$	ϵ_3	i	$-\epsilon_{12}^{-1}$	ϵ_{12}
$(K')_{6}^{(0)}$	1	$-\epsilon_3^{-1}$	ϵ_3	-i	ϵ_{12}^{-1}	$-\epsilon_{12}$

The projective two-valued representations of spinor states for different points of Brollouin zones of crystalline 2H transition metal have been constructed for the first time.

Projective classes, which transform spin-dependent electronic wave functions at the points of high symmetry of the Brillouin zone have been determined for the above-mentioned structures. For the establishment of projective classes we found the method of constructing of factor systems, in particular, the correct factor system for spinor representations; the form of standard factor systems and the phase factors for their conversion to standard factor systems for each projective class have been found.

