Impedance spectroscopy of capacitor systems based on saccharide-derived porous carbon materials <u>Mandzyuk V.I.,</u> Mironyuk I.F., Ivanichok N.Ya., Rachiy B.I.

S Vasyl Stefanyk Precarparhian National University, Shevchenko Street, 57,

Ivano-Frankivsk-76018, Ukraine; volodymyr.mandz.yuk@pnu.edu.ua

The aim: to investigate the passing of electron-ion processes in symmetric capacitor systems based on porous carbon material (PCM) and to compare the results with the data of cyclic voltammetry and galvanostatic studies [1].

Materials: crystalline monohydrates of glucose (**G**) and lactose (**L**) and anhydrous saccharose (**S**) were used as precursors of chars prepared at 400°C for 30 min in air. Oxidizing activation of chars was carried out in ceramic crucibles at **800°C** or **1000°C** for 30 min.

Methods: low-temperature porometry, impedance spectroscopy.

Results

Table 1. Farameters of the polous structure of rems							
Standard	S _{BET} , m²/g	S _{micro} , m²/g	S _{meso} , m²/g	V, cm ³ /g	V _{micro} , cm ³ /g	V _{meso,} cm ³ /g	
G800	383	181	202	0.201	0.086	0.113	
G1000	46	10	36	0.016	0.003	0.013	
L800	437	318	119	0.232	0.162	0.070	
L1000	652	497	155	0.345	0.226	0.118	
S800	356	204	152	0.187	0.092	0.095	
S1000	362	225	137	0.198	0.115	0.083	

 Table 1. Parameters of the porous structure of PCMs

Fig.1. Nitrogen adsorption-desorption isotherms for PCMs.

Fig.3. The equivalent electrical circuit of capacitor systems. L_1 - inductive behaviour of the electrochemical system; R_s - resistance of the electrolyte, contacts and supply wires; $C_2 ||R_2$ and $CPE_3 ||R_3$ - CPE_4 links - the diffusion processes and the accumulation of electric charges at the electrolyte-electrode boundary in the transport pores (macro- and mesopores) and micropores of PCM, respectively.

	Method					
Standard	Chrono-	Cyclic	Impedance			
	potentiometry	voltammetry	spectroscopy			
G800	117	110	112			
G1000	36	32	33			
L800	160	154	154			
L1000	91	87	88			
S800	94	89	91			
S1000	77	74	75			

Table 2. Specific capacit	y of the PCM, F/g
---------------------------	-------------------

Fig.2. The Nyquist diagrams for G800 capacitor system at different bias voltages.

Conclusions:

The passing of electron-ion processes in capacitors based on saccharide-derived PCM in the frequency range 10^{-2} - 10^{5} Hz has been studied. The equivalent electrical circuit is selected and a physical interpretation is proposed for each element of the circuit. The obtained results indicate the dominance of the double electric layer capacity over the capacity due to the redox-reactions.

References:

[1]. V.I. Mandzyuk, I.F. Myronyuk, V.M. Sachko, B.I. Rachiy, Yu.O. Kulyk, I.M. Mykytyn. Structure and electrochemical properties of saccharide-derived porous carbon materials // Journal of Nano- and Electronic Physics. 2018. V.10, N.2. 02018 (7p.) *(in Ukrainian)*.

