

Admittance of thin SiO_x(Si) and SiO_x(Si,Fe) composite films

<u>Antonin S¹</u>, Semenenko M¹, Bratus O¹, Kizjak A¹, Evtukh A.A¹, Fefotov A.K²

 ¹V. Lashkaryov Institute of Semicondactor Physics NAS of Ukraine, 41 Nauki ave., Kyiv, 03028, Ukraine. E-mail: antoninsv@gmail.com
 ²Belarusian State University, 4 Nezavisimosti ave, Minsk 220030, Belarussia.

1.Goals and motivation

Formation of electrical elements that act as micron and submicron sizes inductors.

Optimization of technology for forming nanocrystals in

2. Experimental $\text{SiO}_2(\text{Si})$ &Fe_xO_y(Fe) films was obtained by IPS method with following thermal annealing.

✤IPS-ion-plasma sputtering.
Parameters of deposition process:
P = $6.7 \times 10^{-3} - 1 \times 10^{-2}$ Pa), temperature
of the substrate T = 100-150 °C, the

3. Results

Frequency *f* dependences of the phase shift angle $\theta(f)$ of the initial samples lie in the region of negative values, which indicates the predominance of the capacitive contribution in the admittance.

The annealing significantly affects the shape of the curves $\sigma(f)$ and $\theta(f)$.

The low-frequency dependence θ (f) passes into the region of positive values, which indicates the predominance of the inductive contribution to the admittance at frequencies to the left of the minimum on the curves σ (f).

Investigation of charge transfer in composite structures

cathode heating current $I_c=150$ A, the anode voltage $V_a = 50$ V, anode current $I_a = 10$ A, target bias V = 1.1kV, the current of target $I_t = 0.6-0.7$ mA. Thermal annealing: No annealing, T=673°C, T=773°C C -V characteristics: f=1-10 MHz

-10 MHz

This behavior of the dependences σ (f) and θ (f) of annealed samples with SiOx(Fe) film can be presented by equivalent circuits with the series connection of active and reactive contributions to the impedance.

Frequency *f* dependences of the phase shift angle $\theta(f)$ for the composite thin films: Si/SiO_x (curve 1) and SiO_x (Fe) (curves 2, 3).

Ion-plasma sputtering (IPS) : 1 – Anode, 2 – Cathode, 3 - Discharge chamber, 4 – Target, 5 - Collector of ions, 6 – Magnets, 7 - Magnetic system, 8 – Flange, 9 – Substrate, 10 – Heater, 11 - Valve

Frequency dependences of total admittance $\sigma(f)$ for composite SiO_x(Fe) thin films, measured after annealing in air at different temperatures: 1 - before annealing, 2 - T_a = 673 K, 3 - T_a = 773 K.

Frequency dependences of phase shift angle $\theta(f)$ for composite SiO_x(Fe) thin films, measured after annealing in air at different temperatures: 1 - before annealing, 2 - T_a = 673 K, 3 - T_a = 773 K.

