Dip-effect in conductivity Q1D electrons over superfluid helium

V. A. Nikolaenko, A. V. Smorodin, and S. S. Sokolov

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Nauka Ave., Kharkiv, 61103, Ukraine *E-mail: nikolaenko@ilt.kharkov.ua*

Introduction.

The particular effects has a place in quantum/size systems over superfluid helium which is good expressed at low T[1]. The quasi-one-dimensional surface electrons (Q1D-SEs) conductivity over helium in grooves between rows dielectric threads is investigated.

Setup and results.

The measurements performed at low frequency by a technique using capacitive coupling of two electrodes with electron subsystem (sketch of cell).

1 - measurement electrodes; 2 - screening stripe; 3 helium film; 4 - 1D system of surface electrons: 5 substrate (row of light guides); 6 - upper pressing electrode; 7 - guard ring; 8 - electron source (glow tungsten thread); 9 – insulating plate.

Experiments was carried out with use nylon threads 100 µm in diameter at temperatures 0.5-1.5 K by scanning of electric field, E in the range 1.1 - 1.6kV/cm. The dip-effect maximum taked a place at E=1.3 kV/cm (graphs below).

Potential hole and energy levels

Section of substrate

Analyze.

Difference of levels between substrate and helium, h set the curvature radius of liquid in grooves $R = \sigma / (\rho \cdot g \cdot h)$ (here σ and ρ are surface tension and density of superfluid helium; g is gravity constant) which typically was $35 \,\mu m$.

The harmonic spectrum a 1D system in parabolic potential well $e \cdot E \cdot \delta$ (here δ is the helium surface deflection in groove) is $\omega^2 = eE/(mR)$.

The qualitatively explanation can be next. The conducting stripe at not smooth substrate at relative large E is divided on segments and in this moment takes a place electron percolation through quantum size distance (accompanied by noise in experiment).

Conclusion

In conclusion must be signed the dip-effect not depend from temperature or parameters the measurement signal and disappear at both the large radius, R and very smooth and very rough the substrate surface.

The conductivity dip-effects have been observed in 2D SE on a helium film with a weakly rough substrate [2].

Reference

1. Ginzburg Vl.L., Monarkha Yu.P. Surface electrons in helium over macroscopic structures // Fiz. Nizk. Temp. – 1978. – 4. - P. 1236-1239. Leiderer P., Nazin S., and Shikin V. Dip-effect in the conductivity of 2D electrons on a helium film with a rough substrate// Fiz. Nizk. Temp. -2008, - **34**, - P.489–495