
Spin-crossover behavior of iron 

molecular chain
Iu.Gudyma, yugudyma@gmail.com

Physical, Technical and Computer Sciences Institute of Yuriy Fedkovych Chernivtsi National University, Ukraine

Fig. 1. Schematic interactions of the pseudo-spin states and treatment of the inter-particle

potential. (a) All possible configurations of the nearest pseudo-spin states. Interaction potentials

and average distances between particles depend on the pseudo-spin states. (b) Interaction

potential and harmonic approximation. We consider possible displacement of the particles from

the equilibrium position for the given pseudo-state configuration to be small.

Fig. 2. Average magnetization m (T, Teq)

for
1

2
ln g + δb = -0.5 and δj = 0.

The dashed line indicates condition T =Teq.

CONCLUSION

We have systematically studied the one-dimensional molecular

chain with degenerate states and phononic interaction. Exact

solutions by the method of transfer matrix modified for free boundary

were obtained.

We have shown that there is an exact mapping between the elastic

molecular chain and Ising models of SCO materials.

We have analyzed the regimes of the LS–HS crossover and

identified if the crossover is abrupt or gradual for the specific

parameters. In the case of abrupt crossover we have showed

possibility of existing two peak thermal dependence of the specific

heat capacity.
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INTRODUCTION The spin-crossover (SCO) compounds are the class of inorganic

coordination molecular complexes of the chemical elements with d4-d7 electronic

configurations of the outer orbital which form the ligand environment with transient metal

ion centered in octahedral ligand field. These materials are characterized by two

degenerate spin states: low-spin (LS) state with diamagnetic properties and high-spin

(HS) state with paramagnetic behavior. The LS and HS spin configuration can be

interchanged by the action of external controlling fields such as temperature, pressure,

or light intensity.

Spin-crossover behavior appears as a result of the spin-elastic frustration. Depending

on the particular configuration of the magnetic molecules, a variety of magnetization

behaviors can be described even with a relatively simple model. Such studies could find

a wide variety of practical applications, including further miniaturization of nanodevices

and nanomaterials.

Quasi-one-dimensional systems play an essential role in nanotechnology. In this

work, we consider a molecular chain of particles with two inner states. In our model,

these two inner states may degenerate. The particles are subject to a pair potential of a

general type, which differentiates the inner states of particles. We treat the model

analytically using transfer-matrix formalism.

RESULTS In order to characterize the behavior of a 1D molecular chain considering

both structural and magnetic properties, we are basing on the simple conception in

which the molecules compound a coordination polymer.

We denote a higher energy state as a pseudo-spin +1 state and a lower energy state

as a pseudo-spin -1 state. A spin +1 state has degeneracy g+ and spin -1 has

degeneracy g-. We assume that pair interactions depend on the particle pseudo-states,

and the potentials of the corresponding pairs of pseudo-spin state interactions are V- - (r),

V+-(r), and V++(r). A schematic view of the three microscopic configurations of two

neighboring atoms in the chain is shown in Fig. 1(a). The Hamiltonian of the system is a

sum of the pair potentials and a single-particle field,

where N is the total number of molecules and Wsn is the energy of the single-molecule

pseudo-state. The difference of the pseudo-state energies Δ = W+ - W- is the external

ligand field acting on a single molecule. We apply a harmonic approximation for the pair

nearest-neighbor potential Vsnsn+1 (r) at the potential minimum,

Where аsnsn+1 is a distance where potential has minimum, Vs(0)snsn+1 is the potential

depth, and Ksnsn+1 is an elastic constant coupling nth and (n+1)th molecules in the

pseudo-states sn and sn+1. Schematic treatment of the potentials is shown in Fig. 1(b).

The statistical properties of the model are completely determined by the partition 
function

where the sum is over all states {s1, …, sN} with energy E(s1, …, sN), gsn represents the

degeneracy of the state sn, and β denotes the inverse of the Boltzmann constant times

temperature. It is convenient to consider an ensemble in which Z depends on the

temperature and the field. Certainly, the choice of boundary conditions becomes

irrelevant in the thermodynamic limit.

The partition function can be expressed as the partition function of the Ising model

with the effective Hamiltonian

where

The effective Hamiltonian coincides with the Ising model Hamiltonian with the

reference energy, effective magnetic field, and ferromagnetic interaction constant being

functions of temperature. This dependence roots from taking into account pseudo-

states degeneracy and phononic interactions.
SCO material may abruptly change its

macroscopic behavior, for example,

magnetization, when the external

conditions, such as temperature, are

varied. The region where this

happens is called abrupt crossover,

and it marks a transition from one

state to another. Dependence of

average magnetization per spin as a

function of temperature and

equilibrium temperature m(kBT/J,

kBTeq/J) for the fixed value
1

2
ln g + δb =

0.5 is illustrated graphically in Fig. 2

FIG. 3. (a)–(c) Average magnetization as a function of temperature for Teq < Tcrossover, Teq =

Tcrossover, and Teq >Tcrossover and various values of the
1

2
ln g + δb = 0.1, 0.5, 1, 2 and δj = 0.35.

In the case Teq < Tcrossover, average magnetization has maximum at T = T0 . For Teq =

Tcrossover, maximum is reached at T0 = ∞. When Teq > Tcrossover, average magnetization is a

monotonous function of temperature and has no extrema.

FIG. 4. Specific heat capacity per particle cP (solid line) as a function of temperature and

the -B
𝜕𝑚

𝜕𝑇
derivative (dashed line). (a) Teq = 3Tcrossover. Parameters are chosen to be same

as Fig. 3(c). Maximum of the heat capacity is shifted from the maximum of the derivative
𝜕𝑚

𝜕𝑇
. (b) Teq = 0.3Tcrossover. Parameters are chosen to be same as in Fig. 3(a).
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