Synthesis and characterization of LuFeO₃ nanoparticles

In recent years, the ferroelectric materials Gong Zhiwei¹, Liedienov N.A.^{1,2}, Pashchenko A.V.^{1,2}, Li Quanjun¹, Fesych I.V.³, Levchenko G.G.^{1,2} have attracted much attention because of ¹ State Key Laboratory of Superhard Materials, International Center of Future Science, Jilin their promising applications in memory University. Qianjin Street, 2699, Changchun-130012, China. storage, sensors, microelectronic and *E-mail: <u>nikita.ledenev.ssp@gmail.com</u>* is devices [1]. LuFeO₃ spintronic considered as typical second-generation² Donetsk Institute for Physics and Engineering named after O.O. Galkin, NAS of Ukraine. star Prospect Nauki, 46, Kyiv-03028, Ukraine. multiferroic material the after ³ Taras Shevchenko National University of Kyiv. Volodymyrska Street, 60, Kyiv-01030, Ukraine. classical material BiFeO₃ [2].

Methods of Investigation

- X-ray diffraction (XRD) method using Shimadzu LabX XRD-6000 diffractometer in $Cu_{K\alpha 1}$ -radiation ($\lambda = 0.15406$ nm) at room temperature
- Scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) method using FEI Magellan 400
- Transition electron microscopy (TEM) method using JEM-2200FS Transmission Electron Microscope
- Ferroelectric method using Precision Multiferroic II analyzer equipped by charge-based magnetoelectric response tester
- Magnetic method using Quantum Design SQUID MPMS-3

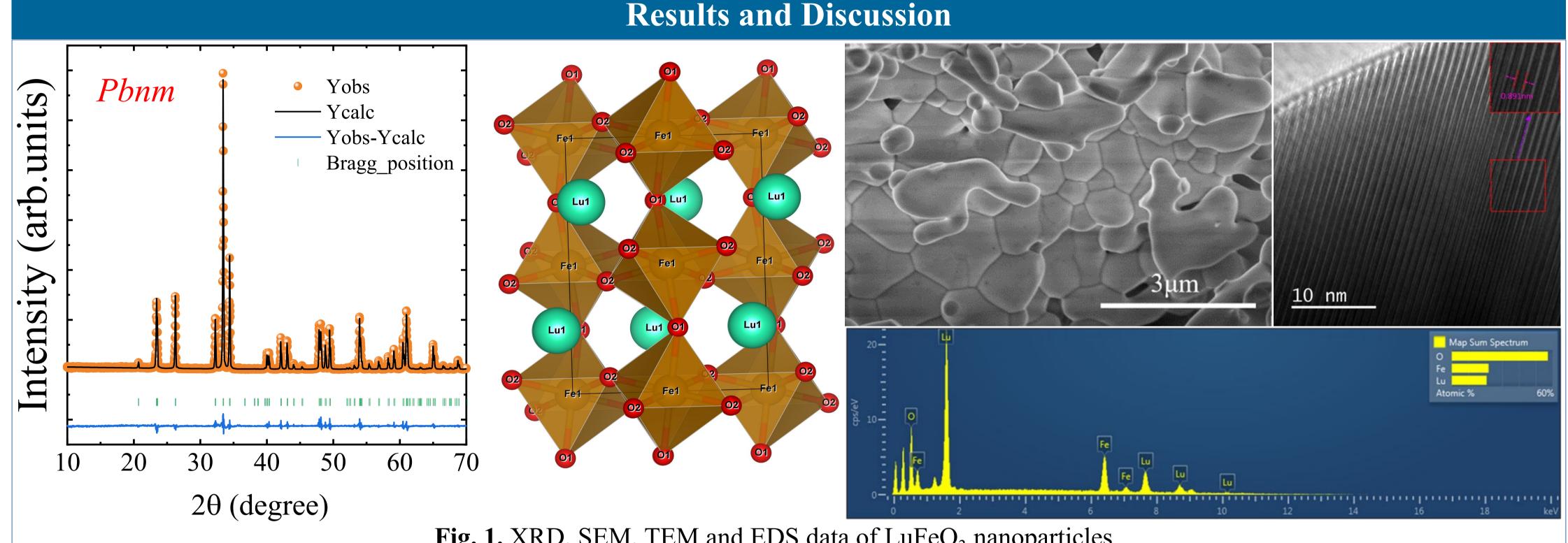
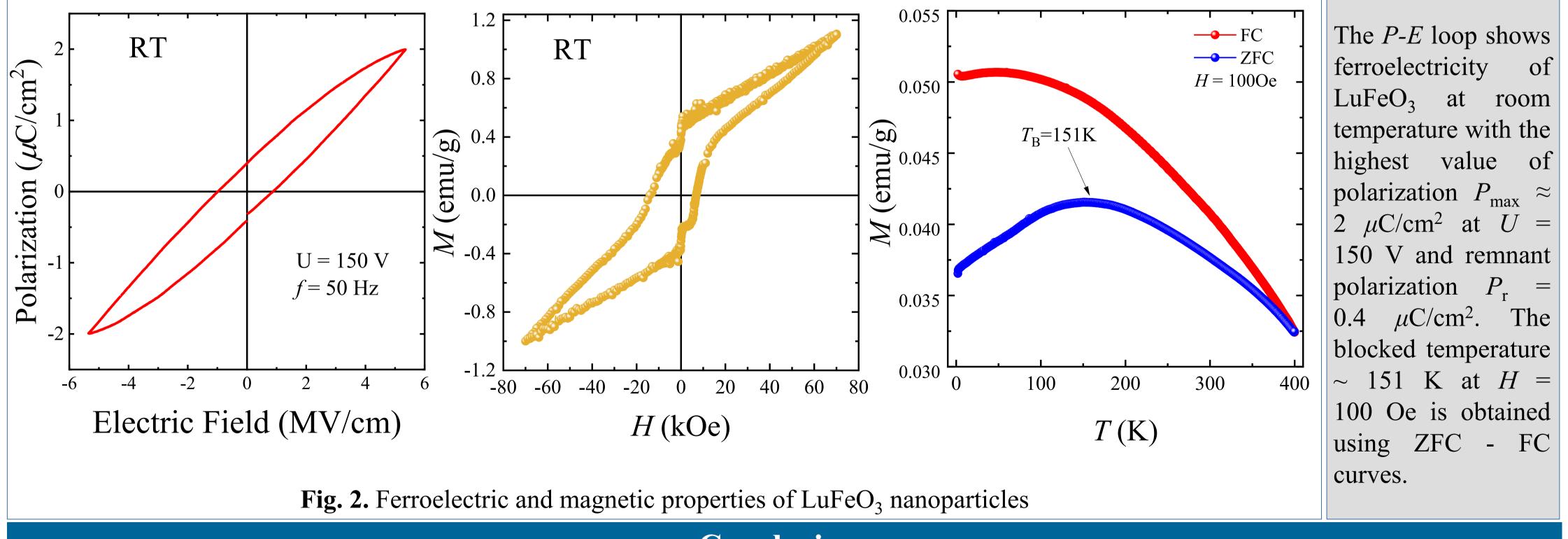



Fig. 1. XRD, SEM, TEM and EDS data of LuFeO₃ nanoparticles

According to XRD, the LuFeO₃ nanopowder can be indexed to the pure orthorhombic *Pbnm* perovskite structure with the lattice parameters of a =5.21332(5) Å, b = 5.55150(5) Å, c = 7.56236 (6) Å and V = 218.868 Å³ (Z = 4). According to SEM and TEM studies, the LuFeO₃ sample consists of fiber-like nanoparticles. Additionally, based on the EDS data, the chemical composition of the LuFeO₃ powder has been confirmed and approximately corresponds to stoichiometric ratio with Lu (19.63 at.%), Fe (21.36 at.%) and O (59.01 at.%).

- Conclusions
- The synthesized LuFeO₃ nanopowder exhibits pure orthorhombic perovskite structure with *Pbnm* space group.
- It has been established that LuFeO₃ nanoparticles have ferroelectric properties at room temperature, the values of which is in good agreement with other literature data for the same composition.
- LuFeO₃ nanopowder demonstrate weak ferromagnetism, the phase transition temperature of which is higher than 400 K.
- The obtained results show coexistence of ferroelectricity and ferromagnetism in the orthorhombic LuFeO₃ nanoparticles that opens up wide prospects for their practical application.

References

1. Chowdhury U., Goswami S., et al. Room temperature multiferroicity in orthorhombic LuFeO₃ // Appl. Phys. Lett. - 2014. - 105(5). - P. 321. 2. Wang Z., Xiao W., et al. Effects of mechanochemical activation on the structural and electrical properties of orthorhombic LuFeO₃ ceramics // J. Am. Ceram. Soc. - 2021. - 104(7). - P. 3019-3029.