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Universal characteristics of medium dispersive systems

It is known that dielectric spectra of solids in low and
radio-frequency range often obey power frequency law
w-(1-n with fractional exponent 0 < n < 1 [1, 2]. Fractional
power frequency dependencies of spectra it is not easy
to explain. Particularly, a raw of models are proposed fo
explanation of the frequency dependence of conductivity
and dielectric permittivity and loss with n = 0.8 on the
basis of different physical processes [3—8]. According to
them a power frequency dependence is the
consequence of either power frequency dependence of
hopping time caused by overlapping of potentials of
randomly distributed localized charge carriers as for
Elliott model [4] or energy distribution of localized levels
near Fermi level (Austin-Mott model [3]) or in the tails of
allowed band energies. The models predicts different
types of temperature dependence of dielectric constant
and dielectric loss hardly confirmed experimentally.
However, dielectric spectra mainly measured on

amorphous materials show another type of temperature
dependence, often showing some universality that
should be expected from universality of frequency
response.
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FIG. 4: Temperature dependence of dielectric loss for glass
transition metal oxide 50P>05-10Ba0O—-40FeO on different fre-
quencies (1-100 Hz, 2 - 1 kHz, 3 - 10 kHz, 4 - 100 kHz) (from
fig. of [15]).

Main universal features of the dielectric or admittance
spectra with n = 0.8:

1. Weak super-linear increase of dielectric constant and
dielectric loss with increasing temperature that may be fit
by exponential temperature dependence exp(T/T,),

known as inverse Arrhenius law.

2. At lower frequencies temperature dependence of
dielectric constant and loss are stronger showing lower
value of parameter T,.

3. Often the exponent n decreases with increasing
temperature according to a linear law.

4. The temperature dependencies of dielectric constant
and loss is weaker than for an usual thermally activated
Arrhenius processes.

5. Very weak temperature dependencies of dielectric
constant and loss are observed for spectra with n
approaching 1.

6. Temperature dependencies of dielectric loss or
acconductivity are frequency dependent.

7. Limitation of range of the values of complex dielectric
constants and complex ac conductivity measured
experimentally for dielectric response with n = 0.8.
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FIG. 5: Temperature dependence of dielectric loss on different
frequencies for evaporated SiO film (sample S51) (1 - 100 Hz,
2 - 1 kHz, 3 - 10 kHz) (digitized from fig. 4 of [14]).

Let us consider the system with power fractional dis-
tribution of dipoles on their relaxation time.

N(f.f+Af
g = ( Af ) — w(ggn) (1)

where gg is constant, wy is circular frequency. To obtain
the frequency dependencies of Cj(w) and Ca(w) of the
system where effective dipoles are distributed according
to Eq. (1) the following integral should be calculated

C*(w) = C1(w) — jCr(w) = /

We obtain that both C}(w) and Cy(w) depend on fre-

quency according to the same fractional power law with
exponent —(1—n), but with different multiplying factors
depending on n.
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FIG. 6: Temperature dependence of dielectric loss on different
frequencies for 40ZrF,—20BaF;-10YF—(30-x)LiF—xNaF with
x = 15 glass (1 — 1 kHz, 2 — 100 kHz, 3 — 2 MHz) (digitized
from fig. 1 of [16]).

Characteristics of proposed model of temperature behaviour

Calculate the magnitude of distribution on frequency f
considering the distribution function of effective dipoles
on log-log scale assuming the power frequency depen-
dence of g on characteristic frequency wp. On frequency
f — df the relative increase of dg/g should be on (1 —n)
factor less then df / f shift.

dg oAl (fo) dT
T = (f)T (6)

Increasing of dg/g is stronger on lower frequencies that
leads to increasing of (1 — n) and slope of the effec-
tive dipoles distribution on log-log scale with increas-
ing temperature. Solving the equation we obtain that

g = go exp(T/Ty) where Ty = (1 — n)ln (f_;) Ac-

cording to (1) it could be state that temperature de-
pendence of complex capacity has the same shape. In-
creasing of g(wg) with increasing temperature consists of
two parts: frequency independent and frequency depen-
dent ones (Eq. (6)). Since frequency dependent term is
proportional to In(f), the shape of dipoles distribution
within the frame of the proposed model stay obeying to
fractional power law with changing of temperature.

Calculate the magnitude of distribution on frequency f
considering the distribution function of effective dipoles
on log-log scale assuming the power frequency depen-
dence of g on characteristic frequency wy. On frequency
f — df the relative increase of dg/g should be on (1 —n)
factor less then df/ f shift.
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Increasing of dg/g is stronger on lower frequencies that
leads to increasing of (1 — n) and slope of the effec-
tive dipoles distribution on log-log scale with increas-
ing temperature. Solving the equation we obtain that

g = go exp(T/Ty) where Ty = (1 — n)ln (f—f) Ac-

cording to (1) it could be state that temperature de-
pendence of complex capacity has the same shape. In-
creasing of g(wq) with increasing temperature consists of
two parts: frequency independent and frequency depen-
dent ones (Eq. (6)). Since frequency dependent term is
proportional to In(f), the shape of dipoles distribution
within the frame of the proposed model stay obeying to
fractional power law with changing of temperature.
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FIG. 3: Temperature dependence of power n for different ma-
terials (1 - SiO (S51) (7, = 830 K) [14], 2 - 50P205-10BaO-
40FeO (T, = 588 K) [15], 3 - 40ZrF4-20BaF3-10YF3-xLiF-
xNaF (T, = 1042 K) [16], 4 - InTe single crystal (T,, = 730 K)

The solution of this equatioﬁ rﬁay be written in the

Cy = Aexp (%) — Aexp {m (%) T%} 7)

shape

Conclusion

Now, it is difficult to declare, that all dispersive dielectric systems characterizing by n =
0.8 obey inverse Arrhenius law with changing a temperature. Since spectra with n = 0.8
obey weak temperature dependence for reliable confirmation it is necessary to have
many dielectric spectra dominating by clear response with n = 0.8 within as more as

solid state physics.

possible wide frequency range without any additive polarization processes.

However, proposed universal
n = 0.8 with high probability may be valid for wide range of the disordered materials, that
is confirmed by universal applicability of fractional power frequency dielectric response in

model of temperature behavior of spectra with
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