The influence of the metal ions modification on physic-chemical properties of VPO catalyst in *n*-pentane oxidation

Kiziun O.V., Zazhigalov V.O.

Institute for Sorption and Problems of Endoecology of National Academy of Sciences of Ukraine, Naumova 13, Kyiv-164, 03164 Ukraine

Introduction. VPO catalysts are known as the catalytic systems for selective transformation of inert paraffins [1], particularly *n*-butane to maleic anhydride (MA) and *n*-pentane to maleic and phthalic anhydrides (PhA) at al. A development of catalytic properties of the VPO composition is possible by means of the introduction of additives of a various nature .

Experimental. Basic VPO composition and VP*Me*O samples modified by ions of *Me*=Bi, La, Mo, Te, Fe, W, Zr, Ti, Ag, Ni were synthesized in organic solution medium of n-butanol with V_2O_5 and H_3PO_4 (the atomic ratio P/V=1.15 and *Me*/V=0.05-0.40) by known method [2]. The synthesized samples were investigated by means of X-ray phase analysis (XRD), X-ray photoelectron spectroscopy (XPS), differential thermal analysis (DTA), scanning electron microscopy (SEM). Types of acidic centers on the VP*Me*O surface were defined by dimethylpyridine and 2,6-dimethylpyridine adsorption methods.

Results. The XRD data show that all the investigated samples before activation in the stream of reactant contained the VOHPO₄•0.5H₂O precursor phase. VPMoO patterns are the exception in which the $(NH_4)_3PO_4MoO_3$ phase are forming with character reflections. Results of DTA show an influence of additives on the crystallization stage of $(VO)_2P_2O_7$ phase in VPMeO samples. SEM data of VPMeO patterns show that all additives have the effect on morphology of VPO matrix. XPS results show introduction of additives changes O 1S-electrons binding energy. This fact can influence on the rate of paraffin transformation. The additives introduction influences on acid-base properties of the surface of VPMeO catalysts. It was established that a change of these properties regulates the selectivity of anhydrides, particularly the selectivity of PhA and MA formation in partial oxidation of *n*-pentane.

Fig. 1. XRD patterns of VPMeO samples at Me/V≤0.10; + VOHPO₄•0.5H₂O phase.

Table 1. The data of DTA analysis of the promoted samples.

2VOPO4					
Sample	Me/V	Temperature effect, ^o C			
		I endo	II endo	l exo	ll exo
VPO	-	145	465	567	644
VPMoO	0,10	125	450	610	657
VPFeO	0,10	139	474	577	727
VPWO	0,10	135	475	687	777
	0,20	137	467	697	771
VPTeO	0,10	135	472	572	650
	0,20	137	476	567	648
VPTiO	0,10	130	470	554	657
VPLaO	0,20	124	487	590	627
VPBiO	0,10	136	428	517	740
VPZrO	0,10	117	438	540	664
	0,20	152	444	520	697
VPNiO	0,18	171	440	510	594
VPAgO	0,10	165	444	530	627
	0,20	177	446	531	631

Fig. 2. Scanning electron microphotographies of VPMeO samples at Me/V=0.10 atomic ratio and the element distribution.

Fig. 3. Selectivity to MA and PhA in npentane oxidation from Lewis acidity of surface of VPMeO catalysts.

VPO

VPZrO

VPTeO

VPMoO

samples)

VPLaO

References

1. Centi G., Golinelli G., Busca G. Modification of the surface pathways in alkane oxidation by selective doping of Bronsted acid sites of vanadyl pyrophosphate // J Phys Chem. - 1990. - 94. - P. 6813-6819.

2. Zazhigalov V.A., Haber J., Stoch J. et al. Properties of cobalt-promoted (VO)₂P₂O₇ in the oxidation of butane // Applied Catalysis. – 1993. – 96. – P. 135-150.