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Theoretical Background for Local Gradient Theory of Dielectrics 

Numerical Calculations for PZT-5H 

The main conclusions: 
• Within the local gradient theory, the dielectric beam deflection is smaller than that in the classical Bernoulli-Euler dielectric beam model.  

This shows that the local mass displacement being taken into account stiffens the nanocantilever beam.  

• Due to the piezoelectric effect, the deflection predicted by the local gradient theory of the dielectric beam is smaller than that provided by the classical theory  of an elastic beam.  

• The size effect induced by the local mass displacement is significant when the beam thickness is small and close to the material length scale parameter.  

In this case, the differences in the deflection values predicted by the local gradient dielectric beam model and classical beam model can be large.  

Such a result agrees well with experimental studies and Bernoulli-Euler strain gradient theory. 

• In the case of neglecting the local mass displacement, the local gradient dielectric beam theory reduced to the classical beam theory. 

• The developed local gradient model of dielectric beams may be used to design new devices that utilize the piezoelectric micro/nano-beam elements as constituting blocks. 
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Figure 2. Dielectric beam deflection with different coupling 

factor        between the mechanical fields and the local mass 

displacement. Comparison between the local gradient beam 

theory (LGBT), classical beam theory (CBT), and strain 

gradient beam theory (SGBT) of dielectrics 

Figure 4. Variation of the end point beam deflection 

w(L) with the beam thickness h. Comparison between 

the strain gradient beam theory and local gradient 

beam theory 

Figure 3. Variation of the end point beam 

deflection w(L)  with the beam length L. 

Comparison between the classical beam theory, 

strain gradient beam theory, and local gradient 

theory of the beam 
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Figure 1. The cantilever beam with rectangular 

cross section subjected to a tip-point load 

We consider an elastic polarized nonferromagnetic body that occupies the domain (V) and is 

bounded by a smooth surface. Let the body be under the effect of external forces and electric 

field inducing mechanical and polarization processes in it. To describe a more complex 

material behavior, local gradient theory of dielectrics takes into account the changes in the 

material microstructure alongside the mechanical deformation and electric polarization. This 

theory relates the above microstructure changes to the process of the local mass 

displacement (see for details Hrytsyna, O, and Kondrat, V. Local Gradient Theory for 

Dielectrics: Fundamentals and Applications. Jenny Stanford Publishing Pte. Ltd., 2020).   
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For the linear stationary isothermal approximation, the system of basic equations includes: 

Here,                are the stress and strain tensors; u is the displacement vector; F denotes the mechanical 

mass force;      is the mass density;                    are the specific densities of the induced charge and 

induced mass, respectively; D represents the electric displacement vector; E and      are electric field and 

polarization vectors, respectively;      is the electric potential;                          is the chemical potential;  

       is the energy measure of the effect of the local mass displacement on the internal energy;        is the 

specific vector of the local mass displacement;                           is the generalized internal energy;      is 

the permittivity of vacuum. 
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The purpose of this work is   

(i)   to derive a general formulation of the linear local gradient electroelasticity by variational  

      principle,  

(ii)  to establish a local gradient Bernoulli-Euler dielectric beam model, and  

(iii) to test the obtained relations on the simple problem of a cantilevered piezoelectric beam 

      under the end-point loading. 

is the generalized electric enthalpy 

the virtual work done by the external 

 body force and surface loading 
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Based on the gradient-type constitutive relations of the local gradient electromechanics, the stationary balance equations and corresponding 

boundary conditions for the cantilever piezoelectric beam subjected to the end-point loading are derived from the variational principle. In this case,   

 

 

 

 

The analytical solution is obtained assuming the plane strain state of a beam and Bernoulli-Euler kinematic hypothesis  

 

 

In view of Gauss–Coulomb law  

 

Governing equations are:  

 

 

 

For cantilever beam subjected to a tip-point load, the boundary conditions are: 

 

 

Here,  

 

 

Obtained analytical solution is used for the validation of the size-dependent behavior of piezoelectric nanocantilever beam.  
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Bernoulli-Euler Local Gradient Dielectric Beam Model 
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In a state of plane strain, gradient-type constitutive 

relations  are 
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