

Structural phase transformations in annealed Pt/Mn/Fe trilayers

I.O. Kruhlov¹, N.Y. Schmidt², S.I. Sidorenko¹, G.L.Katona³, M. Albrecht², I.A. Vladymyrskyi¹

¹ Physics of Metals Department, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Ukraine ² Institute of Physics, University of Augsburg, Germany

³ University of Debrecen, Faculty of Science and Technology, Department of Solid State Physics, Debrecen, Hungary

Introduction

Chemically ordered $L1_0$ -FePt is a very interesting magnetic material providing a variety of different applications. For instance, FePt thin films are currently implemented as storage material for application as heatassisted magnetic recording (HAMR) media with ultra-high density. Furthermore, high perpendicular magnetic anisotropy (PMA) and Curie temperature as well as excellent corrosion resistance are distinctive to this phase allowing for further applications in perpendicular magnetic tunnel junctions [1], magnetic micro-electro-mechanical systems (MEMS) [2], and new-type thermopiles [3, 4]. Althought, the reduction in Curie temperature while maintaining strong PMA is still a relevant task for FePt film applications. In this regard, Mn was considered as a doping element for $L1_0$ -FePt [5]. However, solid-state reactions and diffusion regularities in FePt-Mn films requires further studies.

In this study, as-deposited Pt/Mn/Fe trilayers were post-annealed to different temperatures up to 620 °C and the various stages in binary and ternary phase formation initiated by interlayer diffusion were investigated.

Results

450°C

Methodology

Pt(15 nm)/Mn(7.5 nm)/Fe(15 nm)/sub. thin films were deposited by dc magnetron sputtering on thermally oxidized Si(100) substrates with a 100 nm-thick amorphous SiO₂ layer at room temperature. As-deposited films were annealed in the temperature range of 155-620 °C in vacuum (10⁻³ Pa) with an average heating rate of 0.5 °C/s. Sequence of thermally-activated phase transitions in Pt/Mn/Fe thin films was investigated by combination of x-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive x-ray spectroscopy (EDX) point scanning, secondary neutral mass spectrometry (SNMS) depth profiling, atomic force microscopy (AFM), and magnetic properties measurements.

TEM + EDX

Figure 7. (a) EDX spectra and (b) corresponding cross-section TEM image of a 450 °C post-annealed sample. EDX spectra were taken at specific locations of the TEM lamella as marked in (b)

based on XRD, analysis SNMS, and TEM results, the following sequence of the main phase transformations annealing with temperature can be proposed:

> $Pt/Mn/Fe \xrightarrow{280^{\circ}C} Ll_{0}-MnPt + \alpha-Fe$ $\stackrel{450^{\circ}C}{\Longrightarrow} L1_{0}\text{-FeMnPt} + \text{bcc Fe}_{3}\text{Pt} \stackrel{500^{\circ}C}{\Longrightarrow}$ $\stackrel{500^{\circ}C}{\Longrightarrow} L1_{0}\text{-FeMnPt} + \text{fcc Fe}_{3}\text{Pt} \stackrel{620^{\circ}C}{\Longrightarrow}$ 620[°]C $\implies L1_0$ -FeMnPt + $L1_2$ -Fe₃Pt.

Conclusion

The sequence of phase transitions occurring in Pt/Mn/Fe trilayers during post-annealing in vacuum up to 620 °C was investigated. After annealing at 280 °C the ordered binary $L1_0$ -MnPt phase was formed and pronounced Mn surface segregation was registered. An unreacted Fe layer remains in the film at these temperatures, dominating the materials magnetic properties. The following increase of the sample temperature up to 450 °C results in the incorporation of Fe to the $L1_0$ -MnPt structure and the additional formation of metastable bcc Fe₃Pt. Upon further annealing to 500 °C, the bcc Fe₃Pt structure transforms into the paramagnetic fcc Fe₃Pt structure resulting in a decrease of the saturation magnetization. The following rise in saturation magnetization obtained after annealing at 620 °C is related to the chemical $L1_2$ ordering of Fe₃Pt, which is ferromagnetic at room temperature. The final phase products of $L1_0$ -FePtMn and $L1_2$ -Fe₃Pt are consistent with the initial elemental concentrations of the Pt/Mn/Fe trilayer.

Figure 3. (a-h) XRD (θ -2 θ) scans of Pt(15 nm)/ *Mn*(7.5 nm)/Fe(15 nm) films after deposition and post-annealing at different temperatures.

Figure 4. (a-e) In-plane M-H hysteresis loops of

Pt/Mn/Fe films after deposition and post-annealing at different temperatures. (f) Coercivity and (g) saturation magnetization at room temperature as function of annealing temperature.

Acknowledgment

This work was financially supported by the German Research Foundation (DFG Grant number AL618/34-1) and by the GINOP-2.3.2-15-2016-00041 project co-financed by the European Union and the European Regional Development Fund.

References

Kohn A. et al. Appl. Phys. Lett. 102 (2013) 062403. [1] Rhen F.M.F. et al. IEEE Trans. Magn. 39 (2003) 2699. [2] Mizuguchi M. et al. Appl. Phys. Express 5 (2012) 093002. [3] Hasegawa K. et al. Appl. Phys. Lett. 106 (2015) 252405J. [4] Xu D.B. et al. J. Appl. Phys. 109 (2011) 07B747. [5]

NANO-2020, Lviv, Ukraine, 2020

kruhlov@kpm.kpi.ua vladymyrskyi@kpm.kpi.ua