
NANOSCALE EXCITATIONS OF SOLIDS IN THE FORM OF AXIALLY 

SYMMETRIC SOLITONS

Introduction

The excited states of materials with a crystal structure taking into account the nonlinear 

response of the crystal lattice to excitation

Conclusions

Soliton excitations in solids is a development of the concept of traditional electronic excitations (injected electrons, excitons), or excitations of a different physical nature (magnon, polarons, etc.). The main

feature that distinguishes soliton excitations from analogous traditional excitations is the appearance of an amplitude distributed in space. In this case, the spatial distribution of the amplitude of the soliton

excitation has dimensions that do not exceed several nanometers. The studies carried out are of practical interest, since they make it possible to use soliton excitations to control the processes of directed

point transfer of energy or charge

A general system of equations for soliton excitations is formulated, and its exact 3-D solution is constructed in the form of an amplitude modulated plane wave. For the modulating factor, a nonlinear

equation of the type of the nonlinear Schrödinger equation (NLS equation) is formulated. Only movement in the z-direction is considered. Then the components of the vector of dimensionless wave

momentum: 𝒑 ≡ 𝑏𝐤, where b is the crystal lattice constant, satisfy the condition: 𝑝𝑥 = 𝑝𝑦 = 0, 𝑝𝑧 ≠ 0; the components of the dimensionless velocity vector satisfy the condition: β𝑥 = β𝑦 = 0, β𝑧 = 𝑠𝑖𝑛 𝑝𝑧 ;

the components of the dimensionless mass tensor satisfy the condition: μ𝑥 = μ𝑦 = 1, μ𝑧 ≡ Τ1 𝑐𝑜𝑠 𝑝𝑧 ≡ Τ1 1 − 𝛽𝑧
2. The equation for the amplitude in this case takes the form:

(1)

Here f is the quantum state to which the excitation occurred, and 𝑔𝑓 is the nonlinearity parameter, which depends on the crystal parameters. The 𝜉𝛼 variables are the components of the vector 𝛏 = 𝐫 −

𝐫0 𝜏 . The variable r is the quantum spatial variable of excitation in the crystal frame of reference, and 𝐫0 𝜏 = 𝛃𝜏 is the point of conditional localization of excitation. It is a variable of the classical type and it 

describes the motion of the point 𝐫0 𝜏 in the crystal frame of reference. Equations (1) are formulated in eigen reference frame relative to the point 𝐫0.

Equation (1) is exactly satisfied by the function:

𝜑𝑓 𝜉 = 𝐻𝑓 𝜉⊥ Φ𝑓 𝜉𝑧 ,  (2)

where 𝜉⊥ = 𝜉𝑥
2 + 𝜉𝑦

2. In this solution: 𝐻𝑓 𝜉⊥ = 𝜃_ 1 − 𝜆𝑓
⊥𝜉⊥ , where 𝜃_ 𝑥 is the Heaviside step function, which has the following properties: 𝜃_ 𝑥 = 1, for 𝑥 ≥ 0; and 𝜃_ 𝑥 = 0, for 𝑥 < 0. The 𝜆𝑓

⊥ parameter 

is the reciprocal of the radius of the area inside which the function 𝐻𝑓 𝜉⊥ is nonzero, and outside this area it is equal to zero. This choice of the factor 𝐻𝑓 𝜉⊥ is associated with two important properties, 

namely: 𝐻𝑓
𝑞
𝜉⊥ = 𝐻𝑓 𝜉⊥ , where q is any integer degree, and Τ𝜕𝐻𝑓 𝜕𝜉⊥ = 0. These properties make it possible to consider the representation 𝜑𝑓 𝜉 = 𝐻𝑓 𝜉⊥ Φ𝑓 𝜉𝑧 as an exact solution of equation (1), 

which has a finite norm. Substitution of (2) into (1) leads to the expression:

This equation is satisfied outside the region 𝜉⊥ = Τ1 𝜆𝑓
⊥ (i.e., when   𝜆𝑓

⊥𝜉⊥ > 1) due to the properties of the 𝜃_ – function. Inside this region (for  𝜆𝑓
⊥𝜉⊥ ≤ 1), it is satisfied by the differential equation:

and creates solutions in the form: Φ𝑓 𝜉𝑧 = Τ𝐵𝑓 ch 𝜆𝑓 𝜉𝑧 . The complete solution (2), taking into account the normalization condition:  ׮∞
φ𝑓
2 𝜉 𝑑𝜉𝑥𝑑𝜉𝑦𝑑𝜉𝑧 = 1, is reduced to the following

It is the square of the solution that has a physical meaning and is called a soliton.

Two circumstances attract attention on themselves. First, the product μ𝑧𝜉𝑧 in the argument of the function ch−2 … , when taking into account the explicit form of the factors (μ𝑧 = Τ1 1 − β𝑧
2 , 𝜉𝑧 ≡ 𝑧 −

β𝑧𝜏), takes on the following explicit form: μ𝑧𝜉𝑧 ≡ Τ𝑧 − β𝑧𝜏 1 − β𝑧
2, and has a Lorentz-invariant form in the dynamic direction. Secondly, the entire factor 𝜑𝑓

2 𝜉 , on the one hand, is proportional to the

component of the dynamic mass μ𝑧, and on the other hand, the function φ𝑓
2 𝜉 is proportional to the change in the lattice constant: ∆𝐛𝒇 𝜉 ~ −φ𝑓

2 𝜉 . This leads to the appearance of curvature in the space

of the crystal lattice in the vicinity of the point of localization of excitation: 𝑧0 𝜏 = β𝑧𝜏. Formally, it looks as if the quasiparticle mass creates a curvature of the space of crystal.

If we introduce the notation: 𝜎𝑓 ≡ 𝜆𝑓
⊥ 4

Τ𝑔𝑓
2 8𝜋, then due to the values of the 𝜎𝑓 parameter and the velocity β𝑧 = sin 𝑝𝑧 , the shape of the soliton can continuously vary from an almost ellipsoid of rotation

elongated along the dynamic direction (along the z axis) (Fig.1a) to an almost flattened ellipsoid of rotation (Fig. 1.c) Of course, there are also such parameter values for which the excitation has an almost

spherical shape (Fig. 1.b). Τ2𝜎𝑓 (1 − β𝑧
2) . That is, the spatial forms of the soliton are presented for the function: Ψ 𝑟, 𝑧 = 𝜃_ Τ1 − 𝑟 ch2 𝜒𝑧 , where for the convenience of numerical implementation

redesignated: 𝜆𝑓
⊥𝜉⊥ ≡ 𝑟 = 𝑥2 + 𝑦2.

Figure 1 shows the spatial forms of the soliton for the quantity Ψ ≡ φ𝑓
2 𝜉 ൗ4𝜋 𝜆𝑓

⊥ 2
χ , where χ ≡, 𝜉𝑧 = 𝑧 . In this representation, the shape of the soliton is determined exclusively by the parameter χ.

The higher the velocity β𝑧 of a soliton at a fixed value of 𝜎𝑓, the more flattened it's form.

Figure 1.

Spatial forms of solitons for values: χ = 0.5 (a), χ = 1.3 (b) and χ = 5 (c). The soliton propagates in the positive 

direction of the z axis.

The excited states of materials with a crystal structure are considered taking into account the nonlinear response of the crystal lattice to excitation. The possibility of constructing an analytically soliton

solution with axial symmetry and a finite norm is analyzed. The corresponding solution was received.

It is known that an NLS equation with cubic nonlinearity has analytic solutions on the class of hyperbolic functions only for the spatially one-dimensional case. It turned out that there is a physically

consistent case when in a three-dimensional NLS equation it is possible to perform an exact separation of variables in terms of generalized functions. New analytical solutions of the NLS equation with

cubic nonlinearity are obtained. The solutions have the form of axially symmetric 3D solitons.

It is shown that the soliton has a nanoscale axially symmetric spindle-like spatial shape. It can vary from strongly elongated along the dynamic direction (along the z-axis) to strongly oblate, depending on

the parameter values. Varying these parameters makes it possible to control the spatial form of soliton excitation.
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