# The method for control Mn charge state in the MgTiO<sub>3</sub> red phosphors

# L. Borkovska<sup>1</sup>, L. Khomenkova<sup>1</sup>, T. Stara<sup>1</sup>, I. Vorona<sup>1</sup>, V. Nosenko<sup>1</sup>, V. Kladko<sup>1</sup>, O.Gudymenko<sup>1</sup>, K. Kozoriz<sup>1</sup>, C. Labbe<sup>2</sup>, J. Cardin<sup>2</sup>, J.-L. Doualan<sup>2</sup>, T. Kryshtab<sup>3</sup>

<sup>1</sup>V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 45 Pr. Nauky, Kyiv 03028, Ukraine <sup>2</sup>CIMAP, CEA-CNRS-ENSICAEN, Normandie Université, 6 Blvd Maréchal Juin, Caen, France <sup>3</sup> Instituto Politécnico Nacional – ESFM, Av. IPN, Ed.9 U.P.A.L.M., 07738 Mexico D.F., Mexico

#### Objectives

Recently, magnesium titanates have become important for applications in solid state lighting [1]. Specifically, their activation with Mn<sup>4+</sup> ions results in a red emission which can be excited by light of blue LED chip. However, the control of manganese charge state remains one of the major challenges of Mn doped compounds [1].

The **aim of the present work** was to study Mn incorporation in crystal lattice of  $MgTiO_3$  fabricated through a solid-state reaction route and to develop the method for manipulating Mn charge state in the Mn-doped  $MgTiO_3$  red phosphor.



XRD showed that MgTiO<sub>3</sub> phase formed starting from 800°C. The process is accompanied by formation of MgTi<sub>2</sub>O<sub>5</sub> side phase following the reaction: TiO<sub>2</sub> + MgTiO<sub>3</sub>= MgTi<sub>2</sub>O<sub>5</sub>. The MgTi<sub>2</sub>O<sub>5</sub> phase causes strong band-to-band absorption of UV light up to 380 nm.

The Mn-doped MgTiO<sub>3</sub> of stoichiometric composition (mol.%[MgO] : mol.%[TiO<sub>2</sub>] = 1:1) showed weak absorption and weak red PL due Mn<sup>4+</sup> ions. The PL decay curve showed single exponential behavior with relaxation time of ~17  $\mu$ s. The EPR study revealed that at all annealing temperatures Mn incorporated in MgTiO<sub>3</sub> as Mn<sup>2+</sup> mainly.

## Conclusions

In MgTiO<sub>3</sub>:Mn phosphor synthesized under stoichiometric composition, Mn incorporates as  $Mn^{2+}$  mainly. Low intensity of  $Mn^{4+}$  red PL is explained by its thermal quenching, partial absorption of UV excitation light by MgTi<sub>2</sub>O<sub>5</sub> side phase and low concentration of Mn<sup>4+</sup> centers.

An excess MgO causes strong increase of Mn<sup>4+</sup> ion concentration and the decrease of Mn<sup>2+</sup> ion concentration, and affects formation of MgTi<sub>2</sub>O<sub>5</sub> and Mg<sub>2</sub>TiO<sub>4</sub> side phases. This **results in up to 50 times increased Mn<sup>4+</sup> red PL**. It is concluded that excess MgO can be used for control of Mn charge state in magnesium titanates.

### Experimental details

The Mn-doped  $MgTiO_3$  phosphor was produced via sintering in air at 800-1200°C for 1 or 3 h of a mixture of MgO and  $TiO_2$  powders under different molar ratio. An aqueous solution of  $MnSO_4$  was added to powder mixture to provide Mn content of 0.1 mol.%.

X-ray diffraction (XRD) study was carried out using X-ray diffractometer Philips X'Pert-MRD with the Cu/ $\kappa_1$  radiation. Electron paramagnetic resonance (EPR) measurements were carried out using X-band EPR spectrometer Varian E12 (~ 9.5 GHz). The photoluminescence (PL) spectra were excited by a 409-nm diode laser and by the light of a Xe lamp passed through the grating genochromator. PL relaxation was recorded under pulse 410 nm laser excitation

Results. The effect of excess MgO on crystal phase



An excess MgO (1.2:1 and 1.5:1 compositions) resulted in the next changes in characteristics of Mn-doped MgTiO<sub>3</sub> phosphor:

- MgTi<sub>2</sub>O<sub>5</sub> side phase disappeared, but Mg<sub>2</sub>TiO<sub>4</sub> side phase emerged - the PL band at ~701 nm due to Mn<sup>4+</sup> ions in MgTiO<sub>3</sub> phase increased in intensity in ~50 times;

- the absorption due to Mn<sup>4+</sup> ions in MgTiO<sub>3</sub> increased in intensity;
- red PL band at ~660 nm caused by Mn<sup>4+</sup> in Mg<sub>2</sub>TiO<sub>4</sub> emerged;

- the PL decay curve showed bi-exponential behavior with relaxation times of ~17 and 400  $\mu s,$  the latter due to  $Mn^{4+}$  ions in Mg\_TiO\_4;

intensity of the EPR signal caused by Mn<sup>2+</sup> ions decreased.

[1] L. Borkovska, et.al., // J. Mater. Sci.: Mater. Electron. 31 (2020) 7555.

References

*\*Corresponding author:* Dr. Lyudmyla Borkovska (e-mail: I\_borkovska@ukr.net)