

Multicomponent PAL model in application to Eu-doped BaGa₂O₄ ceramics

H. Klym¹, <u>Yuriy Kostiv^{1*}</u>, A. Ingram², A. Luchechko³, I. Karbovnyk³, B. Sadovyi³

> ¹Lviv Polytechnic National University, Lviv, Ukraine <u>*yura.kostiv@gmail.com, klymha@yahoo.com</u> ²Opole University of Technology, Opole, Poland ³Ivan Franko National University of Lviv, Lviv, Ukraine

Introduction

Polycrystalline BaGa₂O₄ ceramics are promising materials for different applications in part, as insulator materials in various optoelectronic devices, as a potential candidate for secondary electron emission coatings in plasma display panels, for proton ceramic fuel cells, etc. Doping of this materials by rare-earth ions results in the transformation of their luminescent and structural properties. The aim of this work is synthesis and study of structural properties of un-doped and doped with Eu³⁺ ions BaGa₂O₄ ceramics.

SAMPLE PREPARATION

SEM and EDX results

Microstructure of the selected area and elemental composition of BaGa₂O₄ ceramics doped with 3 mol% Eu³⁺ ions.

The polycrystalline $BaGa_2O_4$ samples were prepared by solid-state reaction method. As starting materials $BaCO_3$ and Ga_2O_3 with purity 99.99% were used. Powders of stoichiometric composition with 0, 1, 3 and 4 mol.% of Eu_2O_3 (99.99%) were mixed in an agate mortar for 6 h with further pressing in a steel mold. Obtained pellets were annealed at 1200 °C for 12 h in air. After that, the annealing of ceramic samples was carried out at 1300 °C for 4h. The obtained polycrystalline ceramic samples were 4 mm in diameter and 1 mm in thickness.

 $\emptyset = 4 \text{ mm}$

MICROSTRUCTURE OF CERAMICS

Microstructure of the selected area and elemental composition of BaGa₂O₄ ceramics doped with 4 mol% Eu³⁺ ions.

 $BaGa_2O_4 + Eu^{3+} (3 \text{ mol.}\%)$

Energy [keV]

XRD DATA

PAL Results

RESULTS: PAL characteristics

		Fitting parameters					Positron trapping modes					Free volume		
Sample	[fit-1]	τ ₁ , ns	I ₁ , а.н.	τ ₂ , ns	І ₂ , а.н.	τ ₃ , ns	I ₃ , а.п.	τ _{av.} , ns	$\tau_b,$ ns	к _d , ns-1	$\tau_2 - \tau_b,$	τ_2 / τ_b	R ₃ , nm	f ₃ , %
														/ 0
	0.02	0.200	0.833	0.424	0.149	2.196	0.018	0.234	0.218	0.40	0.21	1.95	0.306	0.39
BGO base	0.03	0.200	0.834	0.425	0.148	2.213	0.018	0.234	0.217	0.40	0.21	1.96	0.307	0.40
$\mathbf{D}_{\mathbf{C}}0 + 10/\mathbf{E}_{\mathbf{N}}$	0.03	0.208	0.858	0.454	0.125	2.267	0.018	0.239	0.223	0.33	0.23	2.03	0.312	0.40
DG0+170 EU	0.02	0.206	0.851	0.450	0.132	2.289	0.017	0.239	0.222	0.35	0.23	2.02	0.314	0.40
	0.04	0.211	0.892	0.508	0.084	2.291	0.023	0.237	0.222	0.24	0.29	2.28	0.314	0.54
DG0+3% Eu	0.01	0.212	0.899	0.550	0.079	2.390	0.022	0.240	0.223	0.23	0.33	2.46	0.322	0.56
DC0 / 40/ E	0.01	0.201	0.833	0.411	0.144	2.157	0.024	0.232	0.218	0.37	0.19	1.89	0.302	0.49
DGU+470 EU	0.01	0.206	0.870	0.462	0.109	2.286	0.021	0.235	0.220	0.30	0.24	2.10	0.314	0.50

$\boldsymbol{\tau}_{av.} = \frac{\boldsymbol{\tau}_1 \boldsymbol{I}_1 + \boldsymbol{\tau}_2 \boldsymbol{I}_2}{\boldsymbol{I}_1 + \boldsymbol{I}_2}$	Mean positron lifetime: reflects cumulative defect environment prevailing in sample
Lifetime τ _{b:} associated with the positron trapping in defect-free bulk	$\tau_{b} = \frac{\mathbf{I}_{1} + \mathbf{I}_{2}}{\frac{\mathbf{I}_{1}}{\tau_{1}} + \frac{\mathbf{I}_{2}}{\tau_{2}}}$
$\kappa_{d} = \frac{I_{2}}{I_{1}} \left(\frac{1}{\tau_{b}} - \frac{1}{\tau_{2}} \right)$	Positron trapping rate in defects
τ ₂ - τ _b	Size measure of extended defects where positrons are trapped
Represents the nature of defects	τ_2 / τ_b