Electrocatalytic and photocatalytic activity of sol-gel Pt/TiO₂ and Pt/N/TiO₂ films.

Linnik O.¹, Ihnatiuk D.¹, <u>Smirnova N.¹</u>, Vorobets V.², Kolbasov G.², Šihor M.³, Kočí K.³

¹Chuiko Institute of Surface Chemistry of the NAS of Ukraine. General Naumov Str., 17, Kyiv-03680, Ukraine. E-mail: smirnatali@gmail.com ²Institute of General & Inorganic Chemistry of National Academy of Sciences of Ukraine, Acad. Palladin Str. 32/34, 03680, Kyiv, Ukraine ³Institute of Environmental Technology, VŠB -Technical University of Ostrava, 17. listopadu 15, Ostrava, Czech Republic

Co-doping titania by N and Pt can be used as the photocatalysts for environmental purification, hydrogen production, carbon dioxide reduction, etc. under solar light. As known, the chemical nature of the doping agents can affect the efficiency and mechanism of catalytic or photocatalytic transformations. Herein, the different approaches of synthesis procedures were used to obtain mesoporous and non-porous Pt/TiO₂ and Pt/N/TiO₂ films to investigate the role of structural and surface peculiarities in environmentally important processes, such as electrocatalytic reduction of dissolved oxygen (EOR) and hydrogen evolution reaction (HER) as well as photocatalytic decomposition of atmospheric pollutant, nitrous oxide.

Synthesis procedure

The sol-gel method used for *mesoporous films* is based on the sol formation of titanium(IV) isoproposide, platinum(II) acetylacetonate, a three-block copolymer Pluronic P123 as a template and acetylacetone as a stabilizing agent. The *nonporous films* are formed using the simpler and faster route based on the hydrolysis of titanium(IV) isoproposide and platinum(II) acetylacetonate in ethanol medium. The platinum (II) acetylacetanate (1mol.%) and urea (5mol.%) were used as Pt and N sources. The three layered films were obtained by dip-coating procedure. The UV pretreatment of the film layers is performed to cause the formation of platinum nanoparticles (Pt/(N)/TiO_{2UV}). The thermal treatment of the sample was 450°C.

Electrocatalytic properties					Photocatalytic activity			
Electrode	E _{1/2} (O 1 st cycle (before UV)	2), V 2 nd cycle (after UV)	I (H ₂), mA/cm ² (E= - 1.0 V)	Activity of doped films in EOR at potentials from -0.5 V to -0.8 V is	The most active catalyst for N_2O decomposition process is found to be mesoporous			
TiO ₂ N/TiO ₂	-0.60 -0.58		inactive	enhanced compared to TiO_2 and N/TiO_2 ones.	Pt/N/TiO ₂ film. The lower activity of non-porous Pt/N/TiO ₂			
Pt/TiO ₂	Mesopo	rous films -0.55	inactive TiO_2 and N/TiO_2 ones. $sign = 100000000000000000000000000000000000$					
$\frac{Pt/N/TiO_2}{Pt/TiO_{2UV}}$	-0.55 -0.55	-0.55 -0.52	-0.30 -1.59	UV exposure of the electrodes showed an	non-porous Pt/TiO ₂ non-porous Pt/N/TiO ₂ photolysis (glass) to the lower efficiency of			
Pt/N/TiO _{2UV}	-0.55 Non-po	-0.49 rous films	-1.45	increase of $E_{1/2}$ values pointing on the more	Time (hour) Fig. 1. Photocatalytic decomposition of N_2O under UV light over TiO and doped TiO films			
Pt/TiO ₂ Pt/N/TiO ₂	-0.55 -0.55	- 0.50 -0.53	-1.94 -0.92	effective EOR over some electrodes. It is suggested	Comparing the photocatalytic 302 performance of mesoporous			
Pt/TiO _{2UV} Pt/N/TiO _{2UV}	-0,55	-0.55 -0.54	-0.62 -1.14	the formation of Pt^0 that	$Pt/N/TiO_2$ and Pt/TiO_2 films, one can ⁶ / ₂₉₈ and			

Tab. 1. Efficiency of the films in EOR and HER

dei

Electrocatalytic HER at potentials from -0.8 V to -1.3 V takes place over all Pt and Pt/N doped TiO₂ electrodes while Pt free ones are inactive.

The most efficient electrode for both EOR and HER is non-porous Pt/TiO₂.

Correlation between activity of the $\bar{\mathfrak{z}}_{0,5}$ films in HER and relative intensity (I_{rel}) of XPS Pt4f peaks clearly shows that the formation of Pt-O-Ti bonds (71.1-72.1 eV) has more significant effect rather than Pt^0 (69.6-71.4 eV). No influence of N doping on the efficiency of electrocatalytic reaction is observed.

improve can the electrocatalytic reaction.

Fig. 3. Correlation between efficiency of HER and I_{rel} of some Pt species obtained from XPS data.

> TEM images and EDS mapping confirm the absence of Pt⁰ in the structure of nonporous Pt/TiO₂ while observed for is

be noted that is doping is responsible for more efficient separation of an 296electron-hole pair formed after UV 294 exposure on TiO_2 .

XPS data points on the formation of substitutional N (3,5%), fragments C-N-C (74.2 %) and O-N-O (22.3 %) with binding energy at 395.6, 399.7 and 402.0 eV, respectively.

Photoelectrochemical investigation

Quantum yield (QY) efficiency is drastically increased for all Pt containing films compared to TiO₂ and N/TiO₂ at both 430 and 380 nm. The bandgap is narrowed to 3.1-2.9 eV depending on the synthesis conditions and flat band potential (E_{fb}) is anodically shifted for all Pt modified samples and is situated at near -0.4 V. The change in the electronic structure of TiO_2 due to Pt ions doping is noted. It also proves the XPS results where the formation of common bonds between Ti and Pt ions (Ti-O-Pt) was detected

Electrode	QY×10 ³ 430 nm	QY×10 ³ 380 nm	E _{BG} , eV	E _{fb} , V	E _{VB} , V					
TiO ₂	0.13	6.3	3.2	-0.51	+2.69					
N/TiO ₂	0.18	3.4	3.1	-0.44	+2.66					
mesoporous										
Pt/TiO ₂	3.86	14.39	3.1	-0.39	+2.71					
Pt/N/TiO ₂	2.42	34.54	3.0	-0.37	+2.63					
Pt/TiO _{2UV}	3.86	71.96	3.0	-0.35	+2.65					
Pt/N/TiO _{2UV}	1.21	27.63	3.0	-0.31	+2.69					
non-porous										
Pt/TiO ₂	4.65	34.54	2.9	-0.35	+2.55					
Pt/N/TiO ₂	3.88	31.66	2.9	-0.38	+2.52					
Pt/TiO _{2UV}	2.05	25.33	2.9	-0.38	+2.52					
Pt/N/TiO _{2UV}	2.33	25.91	2.9	-0.44	+2.46					

mesoporous one.

The mean sizes of TiO₂ and Pt⁰ obtained TEM from images the point on nanoparticle formation in the range of 9-14 and 3-4 nm, nm respectively. The values of d-spacing is corresponding to the anatase (101) polymorph of TiO₂.

Fig. 4. XPS Pt4f spectra, TEM images and electron diffraction patterns (inserts), EDS mappings with corresponding TEM images (inserts) of nonporous (a, b, c) and mesoporous (d, e, f) Pt/TiO₂ films.

Acknowledgement: The work was supported from ERDF "Institute of Environmental Technology – Excellent Research "(No. CZ.02.1.01/0.0/0.0/16_019/0000853) and by using Large Research Infrastructure ENREGAT supported by the Ministry of Education, Youth and Sports of the Czech Republic under project No. LM2018098." **Contact information:** Dr. Oksana Linnik, email: <u>okslinnik@yahoo.co.uk</u>; +380444229698.

Tab. 2. Photoelectrochemical characteristics of synthesized electrodes.

Conclusions

Electrocatalytic activity of the obtained electrodes is mainly dependent on the oxidation state of Pt on the surface where the formed Pt⁰ and Ti-O-Pt fragments can be responsible for enhanced EOR and HER, respectively.

The mesoporous surface and N doping improve the photocatalytic N₂O decomposition under UV light compare to other films.

Photoelectrochemical results point on the change of the electronic structure of titania due to the doping with Pt ions.