Photovoltaic devices with InP nanolayers

MOLDOVA STATE UNIVERSITY

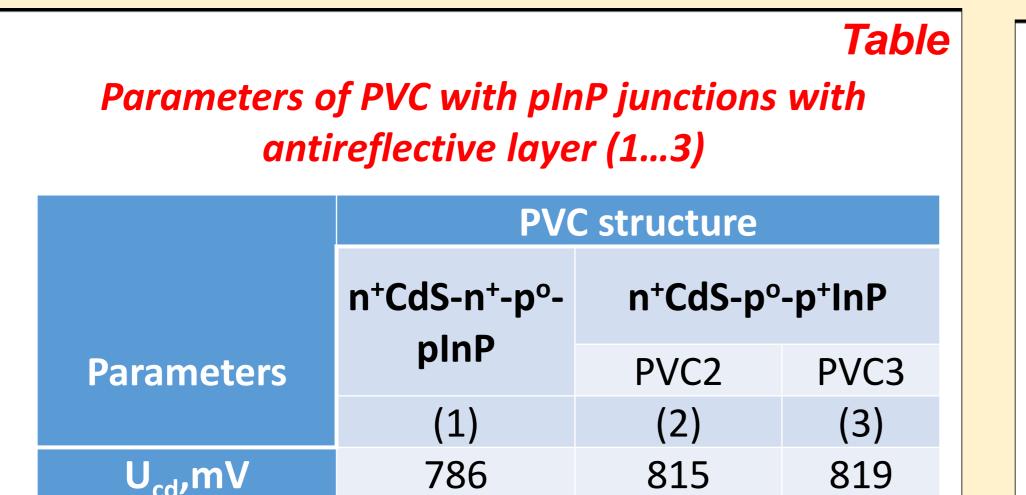
Research and Innovation Institute Scientific Research Laboratory "Physics of semiconductors and devices" 60, Alexe Mateevici str., MD 2009, Chisinau, Republic of Moldova E-mail: andrcoval@mail.ru

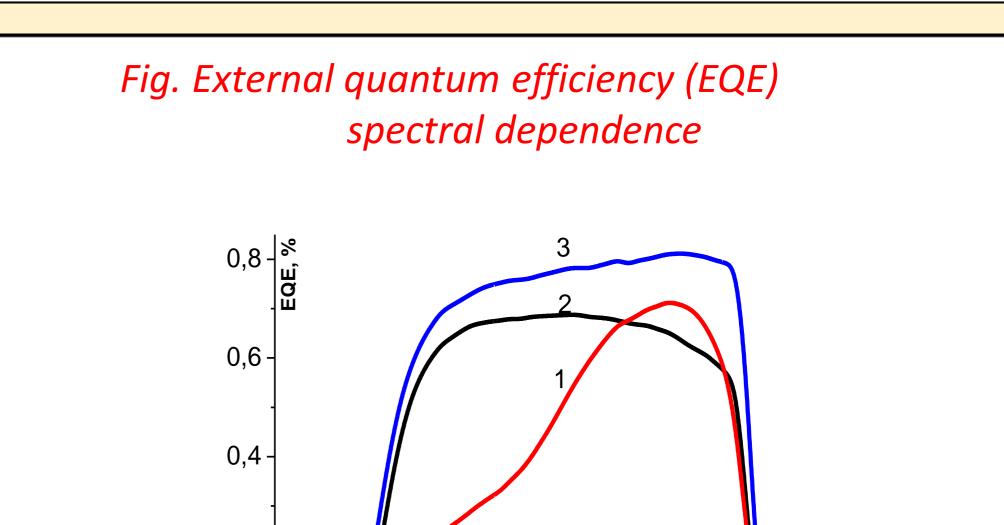
<u>A.Koval, L.Gorceac, V.Botnariuc, S.Vatavu, P.Ketrush, B.Cinic,</u> S.Raevski, C.Rotaru

Objectives:

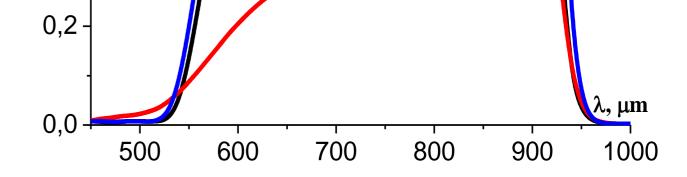
The aim of the present study is elaboration of photodetectors (PD) and photovoltaic cells (PVC) based on In-n⁺CdS-p^o-p⁺InP-(Ag+5%Zn) heterojunctions and In-n⁺CdS-n⁺-p^o-p⁺InP-(Ag+5%Zn) homojunctions.

Solution:


- PD- and PVC fabrication based on plnP hetero and homojunctions by using gaseous phase epitaxy in the In-PCI₃-H₂ system and by using the quasi-closed volume method.
- Deposition of the SiO₂/ZnO antireflective layer (80...160 nm)
 by using the electron beam evaporation method (300K)/


pyrolysis spray (400°C).

PD and PVC testing under (AM1) standard conditions.


Results/Conclusions:

- The dependence of the efficiency (η ,%) of PVC on plnP under standard conditions (AM1) on the value of series resistance R_s was established. η_{max} of 12% was obtained for PVC having R_s =3,08 ohm·cm², while the R_s increase up to 17,47 ohm·cm² decreases the efficiency up to the value of 7,31% (see Table). Thus, one mau conclude, the need in the further optimizion of the technology of deposition of intermediate and frontal epitaxial layers of InP.
- The maximum external quantum efficiency of homo- and heterojunctions prepared from plnP is of 70 ... 80% (see Fig.). The absolute maximum photosensitivity is 450 ... 500µA /mW. Such junctions can be used as photodetectors in the of spectrum (500 ... 950 nm) range.

l _{sc} , mA⋅cm ⁻²	12,84	18,58	16,81
FF,%	72,4	80,3	76,8
R _s , Ohm∙cm²	17,47	3,08	5,63
R _p , Ohm∙cm²	25580	6373	15394
η, %	7,31	12,00	10,74
S _{photoactiv} , cm ²	1,24	1,60	1,15

1 - n⁺CdS-n⁺-p^o-p⁺InP homojunction with SiO₂ antireflective coating;
2, 3 - n⁺CdS-p^o-p⁺InP heterojunction with SiO₂ antireflective coating.

Advantages: Photodetectors /PVC fabricated from InP have high resistance to the influence of corpuscular radiation: electron/proton flux with energy of 1/20 MeV and flux density of 2.10¹⁵/2.10¹² cm⁻². The parameters degradation in time of these devices is insignificant (3 ... 4% in 10 years).