Modification of free volume in the nanostructured MgAl₂O₄ ceramics caused by water molecules <u>Halyna Klym¹</u>, A. Ingram², I. Hadzaman³, I. Karbovnyk⁴ ¹Lviv Polytechnic National University, Bandery str., 12, Lviv-79013, Ukraine ²Opole University of Technology, Ozimska str., 75, Opole- 45370, Poland ³Drohobych State Pedagogical University, I. Franko str., 24, Drohobych-82100, Ukraine ⁴Ivan Franko National University of Lviv, 107, Tarnavskogo Str., Lviv-79000, Ukraine <u>klymha@vahoo.com, halyna.i.klym@lpnu.ua</u>

magnesium aluminate ceramics lead to corresponding increase in the positron trapping rates of extended free-volume defects located as extractions of addition phases near grain boundaries. These phases and freevolume entities in ceramic structure serve as specific trapping centers for positrons penetrating ceramics. It is demonstrated that Tao-Eldrup model can be adequately used for free volume calculations (or nanopores size) in MgO-Al₂O₃ ceramics using o-Ps lifetimes defined from third and fourth components spectra.

EXPERIMENTAL:		MATHEMATICAL TREATMENT of PAL DATA:				
Positron Annihilation Lifetime (PAL) Spectroscopy		LT computer program, 3-component fitting procedure				
Positron trapping in defects	Localized in pore positronium Ps	$N(t) = A \cdot e^{-\alpha \cdot t} + B \cdot e^{-\beta \cdot t} + C \cdot e^{-\gamma \cdot t} + background$ Non-thermalized positrons	(N)			

Pore

The PAL spectra were recorded with conventional fast-fast coincidence system (ORTEC) of 230 ps resolution (determined by ⁶⁰Co isotope measuring) at the temperature T = 22 °C and relative humidity RH = 35 %, provided by special climatic installation. The obtained results agreed well with each other within experimental uncertainties, being no more than ±0.005 ns in lifetimes and ±0.01 in component intensities. Each spectrum was measured with a channel width of 6.15 ps (the total number of channels was 8000) and contained at least ~10⁶ coincidences in a total, which can be considered as conditions of normal PAL measurement statistics.

MATHEMATICAL TREATMENT of PAL DATA: LT computer program, 4-component fitting procedure

PAL RESULTS : ceramics sintered at 1300 °C Fitting parameters and positron trapping modes within 3-component fitting

Sample pre-history	Fitting parameters						
	$ au_{1}$, ns	$I_{I'}$ a.u.	$ au_2$, ns	<i>I</i> ₂ [,] a.u.	$ au_3$ ' ns	<i>I</i> ₃ , a.u.	
water-immersed host matrix	0.22	0.54	0.46	0.32	1.88	0.15	
water-free (initial) host-guest matrix	0.22	0.72	0.44	0.26	2.19	0.02	
Sample	Positron trapping modes						

PAL RESULTS : Fitting parameters and positron trapping modes

Sample		Fitting parameters									
pre-history	τ ₁ ,	I ₁ ,	τ2'	I ₂ ,	τ ₃ ,	I ₃ ,	τ ₄ ,	I ₄ ,			
	ns	a.u.	ns	a.u.	ns	a.u.	ns	a.u.			
			130	0 °C	·			·			
drying	0.155	0.82	0.414	0.16	2.426	0.008	68.74	0.014			
water vapour	0.161	0.76	0.400	0.21	2.619	0.018	58.33	0.007			
drying	0.156	0.82	0.421	0.15	2.448	0.007	68.17	0.014			
Sample			F	Positron	trappin	g modes	5				
pre-history	7	τ., n	S T	'ns	κ_{d} , ns ⁻¹	R R R	Å	R ₄ , Å			

pre-history	τ _{av.} , ns	τ_{b} , ns	κ_{d} , ns ⁻¹	$\tau_2 \tau_b$, ns	$ au_2' au_b$		
water-immersed	0.31	0.27	0.9	0.19	1.7		
water-free (initial)	0.27	0.25	0.6	0.19	1.7		

PAL MODELS of nanostructurized "host-guest" chemistry x3-x2 algorithm

positron traps
positronium traps

It is shown, he third and fourth longest components of lifetime spectra are due to "pick-off" annihilation of o-Ps atoms in nanopores. The Tao-Eldrup model can be applied in order to calculate free volume radii in ceramics. In the case of water-immersed samples, physisorbed water practically not modify positron tapping defects near grain boundaries. O-Ps annihilates thought a "bubble" mechanism within liquid water.

Sample pre-history	τ_n , ns	I_n , a.u.	$ au_{int}$, ns	I_{int} , a.u.	κ_d , ns ⁻¹
water-free (guest influence)	0.219	0.596	0.436	0.217	0.607