MAGNETOCONDUCTANCE OF POLYCRYSTALLINE SILICON IN SemOI-STRUCTURES

<u>A. DRUZHININ¹</u>, I. OSTROVSKII¹, Yu. KHOVERKO¹, K.ROGACKI²

¹Lviv Polytechnic National University

⊠ 79013, Kotlarevsky Str.,1, Lviv, Ukraine, ☎ (032) 258-21-44, (032) 258-26-27, ⊒druzh@polynet.lviv.ua ²Institute of Low Temperature and Structure Research PAS,Gajowicka Str., 95, Wroclaw 53-421, Poland

The experimental results of researches of polycrystalline silicon films in SemOI- structures under the influence of magnetic fields up to 14 T at cryogenic temperatures to the temperature of liquefied helium are presented. The concentration of charge carriers in the poly-Si samples according to studies of the Hall coefficient corresponded to values in the range from 7×10^{17} to 1.7×10^{20} cm⁻³, which covers the metal-dielectric transition for silicon (5×10¹⁸ cm⁻³) from the dielectric to the metal side of the transition. The structure and morphology of polycrystalline resistors in samples of SemOI-structures varied from fine-crystalline (about 30 nm) to large-crystalline (about 300 μ m) depending on the modes of the laser recrystallization process for homogenization of the material

Object research

Morphology of experimental samples of polysilicon in SemOI-structures

Experimental results

Schematic image (a) and topology of experimental samples of SemOI-structures (b): 1-Si-mono, 2recrystallized poly-Si, 3 - SiO₂

Magnetoconductance recrystallised polysilicon with *p*_{300K}=4,8×10¹⁸ cm⁻³ at different *T* (K): 4,2 (1), 5,3 (2), 6,8(3), 9,6(4), 20,2(5). *Inset*: dependence magnetoconductance *vs temperature*

Magnetoconductance for strained recrystallised polysilicon with $p_{300K}=4,8\times10^{18}$ cm⁻³ at T=4,2 K. *Inset*: at different T (K): 4,2 (1), 6,7 (2), 14 (3), 20 (4)

N,cm ⁻³	T,K	$g_{1},$ eV×cm ⁻³	g_2 , eV×cm ⁻³	а ₁ , Å	а ₂ , Å	<i>R_{D⁰}</i> , Å	<i>R_{D⁻}</i> , Å	E _{DC,} meV	ε, meV
2,4×10 ¹⁸	4,2-	$1.3 \cdot 10^{21}$	$2.0 \cdot 10^{19}$	6	23	31-36	121-140	1.5	1.9

Conclutions

To describe the nature of the magnetoconductance of low-alloy recrystallised polysilicon samples with a semiconductor conductivity, we used a model according to which the positive magnetoconductance is explained by quantum magnetoresistance of localized holes due to the magnetic field, in return for negative magnetoresistance characterized by significant spin-orbit interaction.

<u>References</u>

1. Druzhinin A., Ostrovskii I., Khoverko Y., Rogacki K. Rashba interaction in polysilicon layers SemOI-structures // Journal of Electronic Materials.-48(8).- 2019.- pp.4934-4938