Properties of $ZnMoO_4 \cdot 0.8H_2O$ synthesized by ultrasonic method

Diyuk N.V.¹, Zazhigalov V.O.², Diyuk O.A.², Sachuk O.V.², Shcherban N.V.³, Permyakov V.V.⁴ Shcherbakov S.M.⁵

¹ Taras Shevchenko National University of Kyiv 60 Volodymyrska Street, Kyiv 01033, Ukrain. E-mail: <u>nvdiyuk@gmail.com</u>
² Institute for Sorption and Problems of Endoecology of NAS of Ukraine, General Naumov Street, 13, Kyiv 03164, Ukraine
³L.V. Pisarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine, 31 pr. Nauky, Kyiv 03028, Ukraine
⁴ Institute of Geological Sciences, National Academy of Sciences of Ukraine, 55-b O.Gonchar Str., 01054 Kyiv, Ukraine
⁵M.G.Kholodny Institute of Botany of the National Academy of Science of Ukraine Tereshchenkivska str., 2 Kyiv 01004, Ukraine

Background

The $ZnMoO_4 \cdot 0.8H_2O$ has used as anode material for lithium ion batteries. The $ZnMoO_4 \cdot 0.8H_2O$ is a precursor of the $ZnMoO_4$ that is perspective material for bolometers, scintillation detectors, humidity sensors, microwave dielectric devices, battery electrodes and high effective catalyst oxidation ethanol to acetaldehyde. The traditional method of synthesis of the $ZnMoO_4 \cdot 0.8H_2O$ is based on the interaction of soluble salts: $Na_2MoO_4 \cdot 2H_2O$ and $Zn(NO_3)_2 \cdot 6H_2O$ in aqueous solution. Traditional synthesis demand a lot of water, characterized more long synthesis time and more expensive raw materials, but don't guarantee pure product.

Experimental conditions

The dynamics formation phase $ZnMoO_4 \cdot 0.8H_2O$ from oxides ZnO and MoO₃ by ultrasonic treatment shows in this poster. The mechanical mixture of oxides ZnO and MoO₃ with molar ratio 1:1 was used as raw material. Ultrasonic treatment (UST) was carried out USDN-A (УЗДН-А) frequency: 22 kHz, reaction medium – water at room temperature. Time of treatment was 5, 10 and 20 min. After US treatment samples were dried at 100°C and characterized by XRD, adsorption of N₂, SEM, TEM, thermal programmed reducing in a H₂-Ar mixture (TPR-H₂) in the temperature range of 30-800°C at a heating rate of 10 °C/min and thermal programmed heat in Ar (measurement error is 0.5%).

Fig . 7. TG and DTG curves of ZnO/MoO₃ UST_10 in Ar

Fig. 8. TEM ZnO/MoO₃ UST_10

 MoO_3 completely disappear (Fig. 9). CEM data demonstrate morphology like fabric that composed from long interweaving nano-filamentary structures (Fig. 12).

Properties of ZnO/MoO₃ after ultrasonic treatment during 20 minutes

Conclusions

Sonochemical synthesis allows to create a pure and nanostructured $ZnMoO_4 \cdot 0.8H_2O$ phase using cheap oxides ZnO and MoO₃ as raw material just in 20 minutes. The proposed US synthesis is eco-friendly, because by-products are not formed in the synthesis process in contradistinction to traditional synthesis. Moreover, water was used in synthesis can be recycling without cleaning. In addition, ZnMoO₄ can be obtained from ZnMoO₄ \cdot 0.8H₂O avoiding high temperatures and long-lasting synthesis.